Flink DataStream API (十一)Flink 输出到文件

文章目录

  • 输出到文件

Sink 在 Flink 中代表了将结果数据收集起来、输出到外部的意思,所以我们这里统一把它直观地叫作“输出算子”。
之前我们一直在使用的 print 方法其实就是一种 Sink,它表示将数据流写入标准控制台打印输出。查看源码可以发现,print 方法返回的就是一个 DataStreamSink。

public DataStreamSink<T> print(String sinkIdentifier) {
        PrintSinkFunction<T> printFunction = new PrintSinkFunction<>(sinkIdentifier, false);
        return addSink(printFunction).name("Print to Std. Out");
    }

输出到文件

最简单的输出方式,当然就是写入文件了。

Flink 为此专门提供了一个流式文件系统的连接器:StreamingFileSink,它继承自抽象类RichSinkFunction,而且集成了 Flink 的检查点(checkpoint)机制,用来保证精确一次(exactly once)的一致性语义。

StreamingFileSink 为批处理和流处理提供了一个统一的 Sink,它可以将分区文件写入 Flink支持的文件系统。它可以保证精确一次的状态一致性,大大改进了之前流式文件 Sink 的方式。
它的主要操作是将数据写入桶(buckets),每个桶中的数据都可以分割成一个个大小有限的分区文件,这样一来就实现真正意义上的分布式文件存储。我们可以通过各种配置来控制“分桶”的操作;默认的分桶方式是基于时间的,我们每小时写入一个新的桶。换句话说,每个桶内保存的文件,记录的都是 1 小时的输出数据。

StreamingFileSink 支持行编码(Row-encoded)和批量编码(Bulk-encoded,比如 Parquet)格式。这两种不同的方式都有各自的构建器(builder),调用方法也非常简单,可以直接调用StreamingFileSink 的静态方法:

  • 行编码:StreamingFileSink.forRowFormat(basePath,rowEncoder)。
  • 批量码:StreamingFileSink.forBulkFormat(basePath,bulkWriterFactory)。

在创建行或批量编码 Sink 时,我们需要传入两个参数,用来指定存储桶的基本路径(basePath)和数据的编码逻辑(rowEncoder 或 bulkWriterFactory)。
下面我们就以行编码为例,将一些测试数据直接写入文件:

Flink 输出到文件

这里我们创建了一个简单的文件 Sink,通过.withRollingPolicy()方法指定了一个“滚动策略”。“滚动”的概念在日志文件的写入中经常遇到:因为文件会有内容持续不断地写入,所以我们应该给一个标准,到什么时候就开启新的文件,将之前的内容归档保存。也就是说,上面的代码设置了在以下 3 种情况下,我们就会滚动分区文件:

  • 至少包含 15 分钟的数据
  • 最近 5 分钟没有收到新的数据
  • 文件大小已达到 1 GB

你可能感兴趣的:(#,Flink,Flink)