- 【初学数据结构】关于KMP算法的回退思考
Das1
算法数据结构
初学KMP算法时,理解next数组以及回退过程是一个超级劝退过程。如果实在理解不了的,可以直接背。虽然作为十大经典算法之一,但是并不是非常重要,也就考试会考到罢了。关键数据结构解释next数组:next[k]是t[0]~t[j-1]这个串的最大相同前缀的后一个地址,同时也表示最大相同前缀的数量。s串,t串:表示两个索引j,k在进行匹配时所指代的字串next数组是什么?求next数组实际上就是求对于
- 【算法-图论】图的定义与一些常用术语
小蛋编程
C++c++算法
【算法-图论】图的定义图论编辑器1:https://csacademy.com/app/graph_editor/图论编辑器2:https://graphonline.top/ch/1.图是什么图(graph)由节点(node)和边(edge)组成。其中,节点集合记为VVV,边集合记为EEE。每条边连接两个节点,某些图的边可能具有方向性。集合元素的数量用该集合的绝对值来表示。通过对比可以看出,图比
- 【PTA数据结构 | C语言版】求图中关键活动
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目请编写程序,实现求带权的有向图中关键活动的算法。输入格式:输入首先在第一行给出两个正整数,依次为当前要创建的图的顶点数n(≤100)和边数m。随后m行,每行给出一条有向边的起点编号、终点编号、权重。顶点编号从0开始,权重(≤100)为整数。同行数字均以一个空格分隔。输出格式:按格式输出关键活动,其中u为起点编号,v为终点编号。按起点编号的
- 【PTA数据结构 | C语言版】最短路的交点
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目给定有向加权图G,和4个顶点u,v,s,t。假设图G中所有边的权值都非负。设计一个算法来判定“从u到v的最短路径”和“从s到t的最短路径”是否存在一个交点w。也即,顶点w是u到v的最短路径上的一个顶点,同时也是s到t的最短路径上的一个顶点。注意:最短路径包含两个端点;一对顶点间的最短路径可能不止一条,求交点时必须将所有最短路径考虑在内。输
- 【PTA数据结构 | C语言版】求单源最短路的Dijkstra算法
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目请编写程序,实现在带权的有向图中求单源最短路的Dijkstra算法。注意:当多个待收录顶点路径等长时,按编号升序进行收录。输入格式:输入首先在第一行给出两个正整数,依次为当前要创建的图的顶点数n(≤100)和边数m。随后m行,每行给出一条有向边的起点编号、终点编号、权重。顶点编号从0开始,权重(≤100)为整数。同行数字均以一个空格分隔。
- 防不胜防!第六届研究所老姜(姜新宁)算力3.0亏损被骗曝光,巨额损失真相令人胆寒心惊!
大盛律道
数字经济十选五投资诈骗套路频出,投资者股民的“钱袋子”多有损失,以投资理财获取大数据数字经济投资算法为由,将投资者的积蓄收入囊中,成为不法分子常用的诈骗手段之一。为守护好投资者的“钱袋子”,小编持续开展曝光数字经济诈骗行动,维护“投资者”合法权益。近年来,股市波动不断,投资者们无不渴望找到稳健的投资途径。而一些不法分子趁机利用第六届研究所荐股群的手段,设下重重陷阱,致使投资者损失惨重。骗子冒充姜新
- 春季招聘数字化:智能招聘如何升级面试流程?
人事百宝箱
面试流程优化面试流程数字化面试流程优化招聘数字化
2025年春季招聘季,全球企业面临着双重挑战:既要应对人才争夺战,又要在AI技术革命中重构招聘体系。数据显示,采用数字化面试流程的企业,人才录用效率提升47%,候选人体验满意度提高39%。在智能招聘时代,传统依赖人工的面试模式已难以适应快速变化的市场需求,企业需要通过数字化升级实现降本增效与体验优化的双重目标。本文将从行业趋势出发,解析春招面试流程的数字化升级路径,并深度解读Moka人力资源管理系
- 路虽远,行则将至,书虽难,学则必成
茉莉读书
文/茉莉周末,亲友聚餐,难得人来得比较齐全,席间免不了谈论孩子。一亲友家男孩,大学毕业,放弃了父母联系的银行工作,选择继续读研深造。一亲友家女孩,前年大学毕业,没有考研,现在在一小学教书。一个前途未定,一个已有稳定工作。男孩说:我不想过一眼能看透的人生,趁着年轻,我想再努力一把,逼自己一下。女孩说:当老师挺好的,工作稳定,我不想考研了,小学本科够用了。两个年轻人,人各有志,意见相左,大人们也众说纷
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 长篇科幻小说《黄茧》第33章 发现 3
橙黄茧香
如果……如果那样下沉……那样穿越,就……就算最终能够完成,只怕……只怕我……我也会被这透明凝胶给窒息而亡。提取转化后的个体意识量子态信息数据,全需接受蜜云虚拟世界数理逻辑算法制约,必须在M蜜巢系统模式构架下运行,故环境数据对个体意识数据形成制约,如两者间发生数理冲突,个体意识信息数据必会被M蜜巢系统算法清除,个体意识也就将会在蜜云虚拟世界内消亡,窒息本质上对信息数据不构成损伤,但它执行是蜜云虚拟世
- ROS和autosar区别和联系,以及AP/CP对比ROS
Jaliang_
汽车
ROS和autosar区别和联系ROS(RobotOperatingSystem)和AUTOSAR(AutomotiveOpenSystemArchitecture)是两个不同领域的开源软件框架。应用领域的不同:ROS主要面向机器人技术和相关的智能系统,它为机器人研发提供了一套完整的软件解决方案,包括通信、驱动、算法、模拟等各方面的支持。ROS适合用于机器人的控制、感知、规划、模拟等方面的开发,也
- C#实现24种数据校验算法的综合指南及工具包.zip
语嫣凝冰
本文还有配套的精品资源,点击获取简介:在数据通信和网络编程中,数据的完整性和准确性是至关重要的。C#作为一种流行的开发语言,提供了强大的工具来实现各类数据校验算法。本压缩包包含了一个名为“WindowsFormsApp”的C#应用程序,用于展示和实验24种数据校验方法,涵盖从简单到复杂的各种算法。这包括CRC校验、MD5、SHA系列、Adler32、Checksum、ParityBit、LRC、H
- 《数据结构》学习笔记二:算法(二)
小曼blog
继续上节的学习,我们在这一篇文章里把“算法”这一章内容学习完。本节解决问题:算法的好坏到底是如何评估的?知识点:1.函数的渐进增长2.算法的时间复杂度3.常见的时间复杂度4.算法的空间复杂度1.函数的渐进增长这一知识点与数学相关,不过没关系都是很容易理解的内容。问题:假如两个算法的输入规模都是n,A的执行次数是2n+3,B的执行次数是3n+1,那么这两个算法哪一个更好呢?我们来分析一下,用数学的折
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- 大语言模型:人像摄影的“达芬奇转世”?——从算法解析到光影重塑的智能摄影革命
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
导言在摄影术诞生之初,达芬奇或许无法想象,他对于光影、比例和解剖的严谨研究,会在数百年后以另一种形式重生。今天,当摄影师面对复杂的光线环境或苦苦寻找最佳构图时,一位由代码构筑的“光影军师”正悄然降临——大语言模型(LLM)正以前所未有的方式,重塑人像摄影的创作边界。解构经典:大语言模型如何“消化”百年摄影智慧大语言模型并非凭空创造建议,其根基在于对海量摄影知识体系的深度理解与结构化重组。理论内化:
- 集群技术笔记-HAProxy 与 Keepalived 高可用负载均衡实战
目录前言HAProxy一、HAProxy介绍(一)定义(二)核心优势(三)调度算法速查表(四)工作模式(五)配置文件结构(六)健康检查字段二、搭建负载均衡集群(一)准备基本环境(二)配置流程配置真实服务器配置代理服务器(三)客户端验证三、配置健康检查页面(一)修改配置文件追加配置内容(二)重启服务(三)浏览器访问验证Keepalived一、Keepalived介绍(一)定义(二)功能(三)工作原理
- LVS调度算法
等风来也chen
随笔lvslvs调度算法
LVS的十种调度算法一)静态调度:①RR(RoundRobin):轮询调度轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。【提示:这里是不考虑每台服务器的处理能力】②WRR:weight,加权轮询(以权重之间的比例实现在各主机之间进行调度)由于每台服
- 怎样考研才最高效呢?如何准备呢?
十里li
考研
大学生考研全攻略:备考路径+高效学习法+时间管理考研全流程导航(时间轴)2023-01-012023-02-012023-03-012023-04-012023-05-012023-06-012023-07-012023-08-012023-09-012023-10-012023-11-012023-12-012024-01-012024-02-012024-03-01确定目标院校英语/数学筑基专
- LVS调度算法+防火墙解决轮询调度问题+会话解决
甜辣小悦羊
lvs服务器运维
lvs的调度算法类型分配:依据负载状态静态方法:仅根据算法本身进行调度,不考虑RS的负载情况动态方法:主要根据每RS当前的负载状态及调度算法进行调度Overhead=value较小的RS将被调度静态调度方法:RR(roundrobin):轮询RS分别被调度,当RS配置有差别时不推荐WRR(WeightedRR):加权轮询根据RS的配置进行加权调度,性能差的RS被调度的次数少SH(SourceHas
- LVS的10种调度算法
蜡笔晓心
其他
1.1静态算法:1.1.1rr(roundrobin):轮询调度算法:轮询调度算法的原理就是依次将用户的访问请求,平均的分配到每一台web服务节点上,从1开始,到最后一台服务器节点结束,然后在开始新一轮的循环,这种算法简单,但是没有考虑到每台节点服务器的具体性能1.1.2wrr(weight):权重调度算法由于每台服务器的性能会高低不同,wrr将会根据管理员设定的权重值来分配访问请求,权重值越大的
- 算法工程师必备:数据结构10大经典算法详解
数据结构与算法学习
数据结构与算法宝典算法数据结构ai
算法工程师必备:数据结构10大经典算法详解关键词:数据结构、经典算法、时间复杂度、应用场景、代码实现摘要:本文是算法工程师的“算法工具箱”指南,系统讲解数据结构领域最核心的10大经典算法(快速排序、归并排序、二分查找、深度优先搜索DFS、广度优先搜索BFS、动态规划、贪心算法、KMP字符串匹配、哈希算法、并查集)。通过生活案例、代码示例、复杂度分析和实战场景,帮你彻底掌握这些算法的原理与应用,真正
- lvs调度算法(10种)
beyoundout
lvs算法
一、静态算法(不考虑后端真实服务器的负载情况,按算法该谁就分配给谁)1.rr(RoundRobin)轮询算法算法原理:将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载举例:就像在食堂打饭,有三个打饭窗口。学生们排成一队从餐厅门口进入食堂,依次到第一个窗口、第二个窗口、第三个窗口打饭,后面的学生再从第一个窗口循环,每个窗口平等地接待学生,
- 2019-4-2晨间日记
展翅的鱼
今天是什么日子起床:8:10就寝:11:30天气:阴心情:美丽纪念日:4月第二天任务清单昨日完成的任务,最重要的三件事:昨天完成了一个面试;体验超市服务人员的工作4小时;与侄女玩耍改进:每日目标的确定;按时早中晚三餐;习惯养成:按时中晚餐;日目标总结;周目标·完成进度写一个简易小程序,完成进度0%;学习·信息·阅读学习小程序;完成法语每日基础单词的认识;阅读一篇英语文章;健康·饮食·锻炼下班走路回
- Java中的值传递 vs 引用传递本质区别
码农小灰
面试题javajava开发语言
目录【导语】面试官到底想考什么?一、值传递和引用传递的本质区别1.值传递(PassbyValue)2.引用传递(PassbyReference)二、Java的“值传递”真相:传的是引用的副本1.基本类型:直接拷贝值2.对象类型:传递引用的副本三、常见误区:别再踩这些坑!误区1:“对象是引用传递”误区2:“数组是引用传递”误区3:“String是特殊引用传递”四、实战案例:覆盖90%的应用场景案例1
- AI产品经理面试宝典第45天:AI应用设计与伦理隐私问题应对指南
TGITCIC
AI产品经理一线大厂面试题产品经理AI面试大模型面试AI产品经理面试大模型产品经理面试AI产品大模型产品
如何提升AI产品的用户体验?问:如何提升AI产品的用户体验?答:用户体验优化需从三个维度突破:数据质量、交互逻辑、反馈机制。首先确保训练数据覆盖真实场景长尾需求,例如智能客服需采集方言、行业术语等特殊语料。其次设计渐进式交互路径,如医疗影像诊断产品采用"一键初筛-人工复核-历史对比"三段式流程。最后建立动态反馈闭环,通过埋点采集用户行为数据,结合A/B测试持续迭代模型输出结果。专业指导此题考察产品
- AI产品经理面试宝典第42天:学习方法与产品流程解析
TGITCIC
AI产品经理一线大厂面试题产品经理AI面试大模型面试AI产品经理面试大模型产品经理面试AI产品大模型产品
具体问答:学习产品及AI知识的方法问:请谈谈您是如何学习产品及AI知识的,以及您认为哪些资源对您帮助最大答:我的学习体系包含三个维度:分层知识架构、实践验证闭环、资源筛选机制。在知识获取阶段,采用「理论-案例-工具」三级学习法:通过《人工智能:一种现代的方法》构建AI基础框架,用TensorFlow官方文档掌握工程实现,结合《启示录》《俞军产品方法论》理解产品逻辑。实践环节采用「项目反哺」模式,例
- Spring Boot+Redis+Caffeine 二级缓存架构的终极实现方案、包含万级QPS下的黄金配置参数、全文超过2500字(博君一赞)
夜雨hiyeyu.com
javaspringbootredis架构后端javaspringcloudspring
SpringBoot+Redis+Caffeine二级缓存架构的终极实现方案、包含万级QPS下的黄金配置参数、全文超过2500字(博君一赞)一、架构设计原理(10万QPS基石)设计优势:二、Caffeine本地缓存原子级配置1.高性能缓存构造器2.容量智能计算算法3.动态TTL策略三、Redis集群极致优化(支撑百万OPS)1.Lettuce连接池配置2.Redis服务端关键配置3.Pipelin
- 单体VS微服务:如何选择最适合的架构?
目录一、什么是单体架构和微服务架构?1.单体架构(MonolithicArchitecture)2.微服务架构(MicroservicesArchitecture)二、单体架构的优缺点优点:缺点:三、微服务架构的优缺点优点:缺点:四、如何选择?适用场景对比五、实际案例分析1.单体架构的成功场景2.微服务的典型应用3.混合模式六、面试与职场建议七、总结在Java开发中,单体架构和微服务架构是两种核心
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理