分布式锁(Redis分布式锁)

Redis分布式锁原理及应用

  • 前言
  • 一、基本原理
    • 1.1 什么是分布式锁
    • 1.2 分布式锁满足的条件
    • 1.3 常见的分布式锁
  • 二、Redis分布式锁的实现核心思路
    • 2.1 实现分布式锁时需要实现的两个基本方法
    • 2.2 核心思路
  • 三、实现分布式锁版本
  • 四、Redis分布式锁误删情况说明
    • 4.1 逻辑说明
    • 4.2 解决方案
    • 4.3 解决Redis分布式锁误删问题
    • 4.4加锁
    • 4.5 释放锁
  • 五、分布式锁的原子性问题
  • 六、Lua脚本解决多条命令原子性问题
    • 6.1 redis中lua脚本的应用
    • 6.2 释放锁的流程
    • 6.3 利用Java代码调用Lua脚本改造分布式锁
    • 6.4 改造好的获取锁,释放锁方法
  • 总结


前言

跟随b站黑马虎翼老师学习redis:
这是我认为b站上最好的redis教程,各方面讲解透彻,知识点覆盖比较全。
黑马redis视频链接:B站黑马redis教学视频
本文参考黑马redis课程笔记


一、基本原理

1.1 什么是分布式锁

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路

思路图解:
分布式锁(Redis分布式锁)_第1张图片

1.2 分布式锁满足的条件

  • 可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思

  • 互斥:互斥是分布式锁的最基本的条件,使得程序串行执行

  • 高可用:程序不易崩溃,时时刻刻都保证较高的可用性

  • 高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能

  • 安全性:安全也是程序中必不可少的一环
    分布式锁(Redis分布式锁)_第2张图片

1.3 常见的分布式锁

Mysql:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见

Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁

Zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案

分布式锁(Redis分布式锁)_第3张图片

二、Redis分布式锁的实现核心思路

2.1 实现分布式锁时需要实现的两个基本方法

  • 获取锁

    • 互斥:确保只能有一个线程获取锁
    • 非阻塞:尝试一次,成功返回true,失败返回false
  • 释放锁

    • 手动释放
    • 超时释放:获取锁时添加一个超时时间

2.2 核心思路

我们利用redis 的setNx方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可
分布式锁(Redis分布式锁)_第4张图片


三、实现分布式锁版本

利用setnx方法进行加锁,同时增加过期时间防止死锁,此方法可以保证加锁和增加过期时间具有原子性

  • 加锁逻辑
    锁的基本接口
public interface ILock{
 //尝试获取锁
 /**
     * @param timeoutSec 锁持有的超时时间,过期后自动释放
     */
    boolean tryLock(long timeoutSec);

    //释放锁
    void unlock();
}

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性

public class SimpleRedisLock implements ILock{

    @Resource
    private StringRedisTemplate stringRedisTemplate;
    private String name;
    private static final String KEY_PREFIX="lock:";
    private static final String ID_PREFIX= UUID.randomUUID().toString()+"-";

    public SimpleRedisLock(String name,StringRedisTemplate stringRedisTemplate) {
        this.name = name;
        this.stringRedisTemplate = stringRedisTemplate;
    }

    @Override
    public boolean tryLock(long timeoutSec) {
	    // 获取线程标示
	    String threadId = Thread.currentThread().getId()
	    // 获取锁
	    Boolean success = stringRedisTemplate.opsForValue()
	            .setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);
	    return Boolean.TRUE.equals(success);
    }
    
    @Override
    public void unlock() {
	    //通过del删除锁
	    stringRedisTemplate.delete(KEY_PREFIX + name);
    }
}
  • 修改业务代码
@Override
    public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象(新增代码)
        SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        //获取锁对象
        boolean isLock = lock.tryLock(1200);
		//加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
    }

四、Redis分布式锁误删情况说明

4.1 逻辑说明

持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明

4.2 解决方案

解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。
分布式锁(Redis分布式锁)_第5张图片

4.3 解决Redis分布式锁误删问题

需求:
修改之前的分布式锁实现,满足:在获取锁时存入线程标示(可以用UUID表示)
在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致

  • 如果一致则释放锁
  • 如果不一致则不释放锁

核心逻辑:
在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。
分布式锁(Redis分布式锁)_第6张图片

4.4加锁

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
   // 获取线程标示
   String threadId = ID_PREFIX + Thread.currentThread().getId();
   // 获取锁
   Boolean success = stringRedisTemplate.opsForValue()
                .setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
   return Boolean.TRUE.equals(success);
}

4.5 释放锁

public void unlock() {
    // 获取线程标示
    String threadId = ID_PREFIX + Thread.currentThread().getId();
    // 获取锁中的标示
    String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
    // 判断标示是否一致
    if(threadId.equals(id)) {
        // 释放锁
        stringRedisTemplate.delete(KEY_PREFIX + name);
    }
}

五、分布式锁的原子性问题

更为极端的误删逻辑说明:

线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的,我们要防止刚才的情况发生

六、Lua脚本解决多条命令原子性问题

Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。Lua是一种编程语言,它的基本语法大家可以参考网站:https://www.runoob.com/lua/lua-tutorial.html,这里重点介绍Redis提供的调用函数,我们可以使用lua去操作redis,又能保证他的原子性,这样就可以实现拿锁比锁删锁是一个原子性动作了,作为Java程序员这一块并不作一个简单要求,并不需要大家过于精通,只需要知道他有什么作用即可。

6.1 redis中lua脚本的应用

这里重点介绍Redis提供的调用函数,语法如下:

redis.call('命令名称', 'key', '其它参数', ...)

例如,我们要执行set name jack,则脚本是这样:

# 执行 set name jack
redis.call('set', 'name', 'jack')

例如,我们要先执行set name Rose,再执行get name,则脚本如下:

# 先执行 set name jack
redis.call('set', 'name', 'Rose')
# 再执行 get name
local name = redis.call('get', 'name')
# 返回
return name

写好脚本以后,需要用Redis命令来调用脚本,调用脚本的常见命令如下:
分布式锁(Redis分布式锁)_第7张图片
例如,我们要执行 redis.call(‘set’, ‘name’, ‘jack’) 这个脚本,语法如下:
分布式锁(Redis分布式锁)_第8张图片
如果脚本中的key、value不想写死,可以作为参数传递。key类型参数会放入KEYS数组,其它参数会放入ARGV数组,在脚本中可以从KEYS和ARGV数组获取这些参数:
在这里插入图片描述

6.2 释放锁的流程

接下来我们来回一下我们释放锁的逻辑:

释放锁的业务流程是这样的

​ 1、获取锁中的线程标示

​ 2、判断是否与指定的标示(当前线程标示)一致

​ 3、如果一致则释放锁(删除)

​ 4、如果不一致则什么都不做

如果用Lua脚本来表示则是这样的:

最终我们操作redis的拿锁比锁删锁的lua脚本就会变成这样

-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then
  -- 一致,则删除锁
  return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0

6.3 利用Java代码调用Lua脚本改造分布式锁

lua脚本本身并不需要大家花费太多时间去研究,只需要知道如何调用,大致是什么意思即可,所以在笔记中并不会详细的去解释这些lua表达式的含义。

我们的RedisTemplate中,可以利用execute方法去执行lua脚本,参数对应关系就如下图
分布式锁(Redis分布式锁)_第9张图片

6.4 改造好的获取锁,释放锁方法

package com.hmdp.utils;

import cn.hutool.core.lang.UUID;
import org.springframework.core.io.ClassPathResource;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;

import javax.annotation.Resource;
import java.util.Collections;
import java.util.concurrent.TimeUnit;

public class SimpleRedisLock implements ILock{

    @Resource
    private StringRedisTemplate stringRedisTemplate;
    private String name;
    private static final String KEY_PREFIX="lock:";
    private static final String ID_PREFIX= UUID.randomUUID().toString()+"-";
    private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
    static {
        UNLOCK_SCRIPT = new DefaultRedisScript<>();
        UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
        UNLOCK_SCRIPT.setResultType(Long.class);
    }
    public SimpleRedisLock(String name,StringRedisTemplate stringRedisTemplate) {
        this.name = name;
        this.stringRedisTemplate = stringRedisTemplate;
    }

    @Override
    public boolean tryLock(long timeoutSec) {
        //获取线程标识
        String threadId = ID_PREFIX+Thread.currentThread().getId();
        //获取锁
        Boolean success = stringRedisTemplate.opsForValue()
                .setIfAbsent(KEY_PREFIX + name, threadId , timeoutSec, TimeUnit.SECONDS);
        return Boolean.TRUE.equals(success);
    }

    @Override
    public void unlock() {
        stringRedisTemplate.execute(UNLOCK_SCRIPT, Collections.singletonList(KEY_PREFIX + name),ID_PREFIX+Thread.currentThread().getId());
    }
}

总结

基于Redis的分布式锁实现思路:

  • 利用set nx ex获取锁,并设置过期时间,保存线程标示
  • 释放锁时先判断线程标示是否与自己一致,一致则删除锁
    • 特性:
      • 利用set nx满足互斥性
      • 利用set ex保证故障时锁依然能释放,避免死锁,提高安全性
      • 利用Redis集群保证高可用和高并发特性

笔者总结:我们一路走来,利用添加过期时间,防止死锁问题的发生,但是有了过期时间之后,可能出现误删别人锁的问题,这个问题我们开始是利用删之前 通过拿锁,比锁,删锁这个逻辑来解决的,也就是删之前判断一下当前这把锁是否是属于自己的,但是现在还有原子性问题,也就是我们没法保证拿锁比锁删锁是一个原子性的动作,最后通过lua表达式来解决这个问题

你可能感兴趣的:(java,后端,java,redis,后端,spring,boot,lua)