分类目录:《自然语言处理从入门到应用》总目录
默认情况下,链(Chains)和代理(Agents)是无状态的,这意味着它们将每个传入的查询视为独立的(底层的LLM和聊天模型也是如此)。在某些应用程序中(如:聊天机器人),记住先前的交互则非常重要。记忆(Memory)正是为此而设计的。 LangChain提供两种形式的记忆组件。首先,LangChain提供了用于管理和操作先前聊天消息的辅助工具,这些工具都被设计为模块化的使用方式。其次,LangChain提供了将这些工具轻松整合到链中的方法。
记忆涉及了在用户与语言模型的交互过程中保持状态的概念。用户与语言模型的交互被捕捉在ChatMessage的概念中,因此这涉及到对一系列聊天消息进行摄取、捕捉、转换和提取知识。有许多不同的方法可以实现这一点,每种方法都存在作为自己的记忆类型。通常情况下,对于每种类型的记忆,有两种使用记忆的方法。一种是独立的函数,从一系列消息中提取信息,另一种是在链中使用这种类型的记忆的方法。记忆可以返回多个信息(如:最近的 N N N条消息和所有先前消息的摘要),返回的信息可以是字符串或消息列表。在本文中,我们将介绍最简单形式的记忆:"缓冲"记忆。它只涉及保持先前所有消息的缓冲区。我们将展示如何在这里使用模块化的实用函数,然后展示它如何在链中使用(返回字符串和消息列表两种形式)。
ChatMessageHistory
在大多数记忆模块的核心实用类之一是ChatMessageHistory
类。这是一个超轻量级的包装器,提供了保存人类消息、AI 消息以及获取所有消息的便捷方法。如果我们在链外管理记忆,则可以直接使用此类。
from langchain.memory import ChatMessageHistory
history = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")
history.messages
[HumanMessage(content='hi!', additional_kwargs={}, example=False),
AIMessage(content='whats up?', additional_kwargs={}, example=False)]
ConversationBufferMemory
现在我们展示如何在链中使用这个简单的概念。首先展示ConversationBufferMemory
,它只是一个对ChatMessageHistory
的包装器,用于提取消息到一个变量中。我们可以首先将其提取为一个字符串:
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory()
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")
memory.load_memory_variables({})
输出:
{'history': 'Human: hi!\nAI: whats up?'}
我们还可以将历史记录作为消息列表获取:
memory = ConversationBufferMemory(return_messages=True)
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")
memory.load_memory_variables({})
输出:
{'history': [HumanMessage(content='hi!', additional_kwargs={}, example=False),
AIMessage(content='whats up?', additional_kwargs={}, example=False)]}
最后,让我们看看如何在链中使用这个模块,其中我们设置了verbose=True
以便查看提示。
from langchain.llms import OpenAI
from langchain.chains import ConversationChain
llm = OpenAI(temperature=0)
conversation = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationBufferMemory()
)
conversation.predict(input="Hi there!")
日志输出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI:
> Finished chain.
输出:
" Hi there! It's nice to meet you. How can I help you today?"
输入:
conversation.predict(input="I'm doing well! Just having a conversation with an AI.")
日志输出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI: Hi there! It's nice to meet you. How can I help you today?
Human: I'm doing well! Just having a conversation with an AI.
AI: That's great! It's always nice to have a conversation with someone new. What would you like to talk about?
Human: Tell me about yourself.
AI:
> Finished chain.
输出:
" Sure! I'm an AI created to help people with their everyday tasks. I'm programmed to understand natural language and provide helpful information. I'm also constantly learning and updating my knowledge base so I can provide more accurate and helpful answers."
我们可能经常需要保存消息,并在以后使用时加载它们。我们可以通过将消息首先转换为普通的Python字典来轻松实现此操作,然后将其保存(如:保存为JSON格式),然后再加载。以下是一个示例:
import json
from langchain.memory import ChatMessageHistory
from langchain.schema import messages_from_dict, messages_to_dict
history = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")
dicts = messages_to_dict(history.messages)
dicts
输出:
[{'type': 'human',
'data': {'content': 'hi!', 'additional_kwargs': {}, 'example': False}},
{'type': 'ai',
'data': {'content': 'whats up?', 'additional_kwargs': {}, 'example': False}}]
输入:
new_messages = messages_from_dict(dicts)
new_messages
输出:
[HumanMessage(content='hi!', additional_kwargs={}, example=False),
AIMessage(content='whats up?', additional_kwargs={}, example=False)]
参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain ️ 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/