代码随想录算法训练营第52天|动态规划part10|121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

代码随想录算法训练营第52天|动态规划part10|121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

121. 买卖股票的最佳时机

121. 买卖股票的最佳时机

思路:

贪心

因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

C++代码如下:

class Solution {
public:
    int maxProfit(vector& prices) {
        int low = INT_MAX;
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            low = min(low, prices[i]);  // 取最左最小价格
            result = max(result, prices[i] - low); // 直接取最大区间利润
        }
        return result;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

动态规划

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没区分清楚。

在下面递推公式分析中,我会进一步讲解。

  1. 确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状(没卖出去没有利润),所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递推公式我们就分析完了

  1. dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

  1. 确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

  1. 举例推导dp数组

代码:

python

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        dp = [[0, 0] for _ in range(len(prices))]

        dp[0][0] = 0 - prices[0]
        dp[0][1] = 0

        for i in range(1, len(prices)):
            dp[i][0] = max(dp[i-1][0], 0-prices[i])
            dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])

        return dp[len(prices)-1][1]

122. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 II

思路:

本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

代码:

python

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        dp = [[0, 0] for _ in range(len(prices))]

        dp[0][0] = 0 - prices[0]
        dp[0][1] = 0

        for i in range(1, len(prices)):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i])
            dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])

        return dp[len(prices)-1][1]

你可能感兴趣的:(算法,动态规划)