手把手教你 在IDEA搭建 SparkSQL的开发环境

目录

1. spark版本和scala版本如何选择

1.1 查看官网

1.2 如何获取pom依赖信息

2. 创建Maven项目、添加Scala插件、Scala的sdk

3. 配置pom.xml 添加相关jar依赖

3.1 pom.xml 示例 (spark版本: 3.3.2  scala版本: 2.12)

4. 运行官网测试案例

5. 设置日志级别

5.1 提交任务时,设置任务级别

5.2 修改环境默认日志级别

6. FAQ

6.1 因Spark版本和Scala版本不一致导致的报错


1. spark版本和scala版本如何选择

在IDEA搭建SparkSQL开发环境时,最应该注意的是 依赖包和Scala版本的对应关系

1.1 查看官网

从官网发布的信息中,我们可以得到下面几个信息:

                     spark最新的发行版本 

                     适配的Hadoop版本

                     编译使用的Scala版本

                     依赖jar的pom信息 

官网链接:Downloads | Apache Spark


1.2 如何获取pom依赖信息

方式1: 官网

手把手教你 在IDEA搭建 SparkSQL的开发环境_第1张图片

方式2:  https://mvnrepository.com

参考链接: https://www.cnblogs.com/bajiaotai/p/16270971.html#_label0


2. 创建Maven项目、添加Scala插件、Scala的sdk

参考链接: https://www.cnblogs.com/bajiaotai/p/15381309.html


3. 配置pom.xml 添加相关jar依赖

3.1 pom.xml 示例 (spark版本: 3.3.2  scala版本: 2.12)


    4.0.0

    com.spark
    sparkAPI
    1.0-SNAPSHOT

    
    
        3.3.2
        2.12
    

    

        
            org.apache.spark
            spark-core_${scala.version}
            ${spark.version}
        

        
            org.apache.spark
            spark-yarn_${scala.version}
            ${spark.version}
        
        
            org.apache.spark
            spark-sql_${scala.version}
            ${spark.version}
        

        
            mysql
            mysql-connector-java
            5.1.27
        

        
            org.apache.spark
            spark-hive_${scala.version}
            ${spark.version}
        

        
            org.apache.hive
            hive-exec
            1.2.1
        

    
    


4. 运行官网测试案例

官网链接: https://spark.apache.org/docs/latest/sql-getting-started.html

  test("运行官网案例") {
    /*
    * TODO 运行官网测试案例
    *
    * */
    //1.初始化 SparkSession 对象
    import org.apache.spark.sql.SparkSession

    val spark: SparkSession = SparkSession
      .builder()
      .master("local")
      .appName("Spark SQL basic example")
      .config("spark.some.config.option", "some-value")
      .getOrCreate()

    //2.创建 DataFrame
    val df: DataFrame = spark.read.json("/usr/local/lib/mavne01/sparkAPI/src/main/resources/person.json")

    // 打印df
    df.show()
    // +----+----+
    // | age|name|
    // +----+----+
    // |null|刘备|
    // |  30|关羽|
    // |  19|张飞|
    // +----+----+
    
    //3.关闭资源
    spark.stop()
  }

5. 设置日志级别

在工程中有两处地方可以修改日志级别
               1.提交任务时,设置任务级别
               2.使用环境默认的日志级别 (log4j.properties)

优先级: 提交任务时设置 > 环境默认设置
 

5.1 提交任务时,设置任务级别

    /*
    * TODO 设置日志级别
    *    说明:
    *         这里设置的日志级别,优先级是最高的(会将外部设置覆盖掉)
    *         但是这里设置,只对当前任务有效
    *    级别枚举值:
    *         ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN
    * */

    //设置日志级别
    spark.sparkContext.setLogLevel("ERROR")

5.2 修改环境默认日志级别

可以通过 在resources目录下添加log4j2.properties 配置文件   来修改环境默认的日志级别
当不添加时,默认使用 

           Using Spark's default log4j profile: org/apache/spark/log4j2-defaults.properties

手把手教你 在IDEA搭建 SparkSQL的开发环境_第2张图片

log4j2.properties 模板 

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# Set everything to be logged to the console
rootLogger.level = info
rootLogger.appenderRef.stdout.ref = STDOUT

appender.console.type = Console
appender.console.name = STDOUT
appender.console.target = SYSTEM_OUT
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n%ex

# Settings to quiet third party logs that are too verbose
logger.jetty.name = org.sparkproject.jetty
logger.jetty.level = warn
logger.jetty2.name = org.sparkproject.jetty.util.component.AbstractLifeCycle
logger.jetty2.level = error
logger.repl1.name = org.apache.spark.repl.SparkIMain$exprTyper
logger.repl1.level = info
logger.repl2.name = org.apache.spark.repl.SparkILoop$SparkILoopInterpreter
logger.repl2.level = info

# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
logger.repl.name = org.apache.spark.repl.Main
logger.repl.level = warn

# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs
# in SparkSQL with Hive support
logger.metastore.name = org.apache.hadoop.hive.metastore.RetryingHMSHandler
logger.metastore.level = fatal
logger.hive_functionregistry.name = org.apache.hadoop.hive.ql.exec.FunctionRegistry
logger.hive_functionregistry.level = error

# Parquet related logging
logger.parquet.name = org.apache.parquet.CorruptStatistics
logger.parquet.level = error
logger.parquet2.name = parquet.CorruptStatistics
logger.parquet2.level = error

6. FAQ

6.1 因Spark版本和Scala版本不一致导致的报错

报错信息:
scalac: Error: illegal cyclic inheritance involving trait Iterable
scala.reflect.internal.Types$TypeError: illegal cyclic inheritance involving trait Iterable

这个报错信息可能不一致,具体要看你使用的spark版本和scala版本

可以使用下面这行代码,查看当前环境的scala版本
println(util.Properties.versionString)
// version 2.12.15

你可能感兴趣的:(#,Spark环境搭建,intellij-idea,scala,java,spark,maven)