MySQL 中的 Hash 索引

MySQL 中的 Hash 索引_第1张图片
Hash 本身是一个函数,又被称为散列函数,它可以帮助我们大幅提升检索数据的效率。打个比方,Hash 就好像一个智能前台,你只要告诉它想要查找的人的姓名,它就会告诉你那个人坐在哪个位置,只需要一次交互就可以完成查找,效率非常高。大名鼎鼎的 MD5 就是 Hash 函数的一种。

Hash 算法是通过某种确定性的算法(比如 MD5、SHA1、SHA2、SHA3)将输入转变为输出。相同的输入永远可以得到相同的输出,假设输入内容有微小偏差,在输出中通常会有不同的结果。如果你想要验证两个文件是否相同,那么你不需要把两份文件直接拿来比对,只需要让对方把 Hash 函数计算得到的结果告诉你即可,然后在本地同样对文件进行 Hash 函数的运算,最后通过比较这两个 Hash 函数的结果是否相同,就可以知道这两个文件是否相同。

MySQL 中的 Hash 索引

我们来看下 Hash 索引的示意图:

MySQL 中的 Hash 索引_第2张图片
键值 key 通过 Hash 映射找到桶 bucket。在这里桶(bucket)指的是一个能存储一条或多条记录的存储单位。一个桶的结构包含了一个内存指针数组,桶中的每行数据都会指向下一行,形成链表结构,当遇到 Hash 冲突时,会在桶中进行键值的查找。

那么什么是 Hash 冲突呢?
如果桶的空间小于输入的空间,不同的输入可能会映射到同一个桶中,这时就会产生 Hash 冲突,如果 Hash 冲突的量很大,就会影响读取的性能。

通常 Hash 值的字节数比较少,简单的 4 个字节就够了。在 Hash 值相同的情况下,就会进一步比较桶(Bucket)中的键值,从而找到最终的数据行。

Hash 值的字节数多的话可以是 16 位、32 位等,比如采用 MD5 函数就可以得到一个 16 位或者 32 位的数值,32 位的 MD5 已经足够安全,重复率非常低。

我们模拟一下 Hash 索引。关键字如下所示,每个字母的内部编码为字母的序号,比如 A 为 01,Y 为 25。我们统计内部编码平方的第 8-11 位(从前向后)作为 Hash 值:

MySQL 中的 Hash 索引_第3张图片
Hash 索引与 B+ 树索引的区别
我们之前讲到过 B+ 树索引的结构,Hash 索引结构和 B+ 树的不同,因此在索引使用上也会有差别。

  1. Hash 索引不能进行范围查询,而 B+ 树可以。这是因为 Hash 索引指向的数据是无序的,而 B+ 树的叶子节点是个有序的链表。

  2. Hash 索引不支持联合索引的最左侧原则(即联合索引的部分索引无法使用),而 B+ 树可以。对于联合索引来说,Hash 索引在计算 Hash 值的时候是将索引键合并后再一起计算 Hash 值,所以不会针对每个索引单独计算 Hash 值。因此如果用到联合索引的一个或者几个索引时,联合索引无法被利用。

  3. Hash 索引不支持 ORDER BY 排序,因为 Hash 索引指向的数据是无序的,因此无法起到排序优化的作用,而 B+ 树索引数据是有序的,可以起到对该字段 ORDER BY 排序优化的作用。同理,我们也无法用 Hash 索引进行模糊查询,而 B+ 树使用 LIKE 进行模糊查询的时候,LIKE 后面前模糊查询(比如 % 开头)的话就可以起到优化作用。

对于等值查询来说,通常 Hash 索引的效率更高,不过也存在一种情况,就是索引列的重复值如果很多,效率就会降低。这是因为遇到 Hash 冲突时,需要遍历桶中的行指针来进行比较,找到查询的关键字,非常耗时。所以,Hash 索引通常不会用到重复值多的列上,比如列为性别、年龄的情况等。

你可能感兴趣的:(Mysql,哈希算法,算法)