952. 按公因数计算最大组件大小 : 枚举质因数 + 并查集运用题

题目描述

这是 LeetCode 上的 952. 按公因数计算最大组件大小 ,难度为 困难

Tag : 「数学」、「并查集」

给定一个由不同正整数的组成的非空数组 nums,考虑下面的图:

  • 有  nums.length 个节点,按从  nums[0] 到  nums[nums.length - 1] 标记;
  • 只有当  nums[i] 和  nums[j] 共用一个大于 的公因数时, nums[i] 和  nums[j]之间才有一条边。

返回 图中最大连通组件的大小 。

示例 1: 952. 按公因数计算最大组件大小 : 枚举质因数 + 并查集运用题_第1张图片

输入:nums = [4,6,15,35]

输出:4

示例 2: 952. 按公因数计算最大组件大小 : 枚举质因数 + 并查集运用题_第2张图片

输入:nums = [20,50,9,63]

输出:2

示例 3: 952. 按公因数计算最大组件大小 : 枚举质因数 + 并查集运用题_第3张图片

输入:nums = [2,3,6,7,4,12,21,39]

输出:8

提示:

  • nums 中所有值都 不同

枚举质因数 + 并查集

先考虑如何使用 nums 进行建图,nums 大小为 ,枚举所有点对并通过判断两数之间是否存在边的做法复杂度为 (其中 的最大值),无须考虑。

而不通过「枚举点 + 求公约数」的建图方式,可以对 进行质因数分解(复杂度为 ),假设其分解出来的质因数集合为 ,我们可以建立从 的映射关系,若 存在边,则 至少会被同一个质因数所映射。

维护连通块数量可以使用「并查集」来做,维护映射关系可以使用「哈希表」来做。

维护映射关系时,使用质因数为 key,下标值 value(我们使用下标 作为点编号,而不是使用 ,是利用 各不相同,从而将并查集数组大小从 收窄到 )。

同时在使用「并查集」维护连通块时,同步维护每个连通块大小 sz 以及当前最大的连通块大小 ans

Java 代码:

class Solution {
    static int N = 20010;
    static int[] p = new int[N], sz = new int[N];
    int ans = 1;
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
    void union(int a, int b) {
        if (find(a) == find(b)) return ;
        sz[find(a)] += sz[find(b)];
        p[find(b)] = p[find(a)];
        ans = Math.max(ans, sz[find(a)]);
    }
    public int largestComponentSize(int[] nums) {
        int n = nums.length;
        Map> map = new HashMap<>();
        for (int i = 0; i < n; i++) {
            int cur = nums[i];
            for (int j = 2; j * j <= cur; j++) {
                if (cur % j == 0) add(map, j, i);
                while (cur % j == 0) cur /= j;
            }
            if (cur > 1) add(map, cur, i);
        }
        for (int i = 0; i <= n; i++) {
            p[i] = i; sz[i] = 1;
        }
        for (int key : map.keySet()) {
            List list = map.get(key);
            for (int i = 1; i < list.size(); i++) union(list.get(0), list.get(i));
        }
        return ans;
    }
    void add(Map> map, int key, int val) {
        List list = map.getOrDefault(key, new ArrayList<>());
        list.add(val);
        map.put(key, list);
    }
}

TypeScript 代码:

const N = 20010
const p: number[] = new Array<number>(N), sz = new Array<number>(N)
let ans = 0
function find(x: number): number {
    if (p[x] != x) p[x] = find(p[x])
    return p[x]
}
function union(a: number, b: number): void {
    if (find(a) == find(b)) return 
    sz[find(a)] += sz[find(b)]
    p[find(b)] = p[find(a)]
    ans = Math.max(ans, sz[find(a)])
}
function largestComponentSize(nums: number[]): number {
    const n = nums.length
    const map: Map<numberArray<number>> = new Map<numberArray<number>>()
    for (let i = 0; i < n; i++) {
        let cur = nums[i]
        for (let j = 2; j * j <= cur; j++) {
            if (cur % j == 0) add(map, j, i)
            while (cur % j == 0) cur /= j
        }
        if (cur > 1) add(map, cur, i)
    }
    for (let i = 0; i < n; i++) {
        p[i] = i; sz[i] = 1
    }
    ans = 1
    for (const key of map.keys()) {
        const list = map.get(key)
        for (let i = 1; i < list.length; i++) union(list[0], list[i])
    }
    return ans
};
function add(map: Map<numberArray<number>>, key: number, val: number): void {
    let list = map.get(key)
    if (list == null) list = new Array<number>()
    list.push(val)
    map.set(key, list)
}
  • 时间复杂度:
  • 空间复杂度:

最后

这是我们「刷穿 LeetCode」系列文章的第 No.952 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地

本文由 mdnice 多平台发布

你可能感兴趣的:(后端)