几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,连接是在Worker上创建。如果Connection的获取放到dstream.foreachRDD之前,那么
Connection的获取动作将发生在Driver端,然后通过序列化的方式发送到各个Worker(Connection的序列化通常是无法正确序列化的)
3. Connection的获取在foreachRDD的参数中获取,同时还要在遍历RDD之前获取(调用RDD的foreach方法前获取),如果遍历中获取,那么RDD中的每个record都要打开关闭连接,这对于数据库连接资源将是极大的考验
4. 业务逻辑处理定义在func中,它是在foreachRDD的方法参数体中定义的,如果把func的定义放到外面,即Driver中,貌似也是可以的,Spark会对计算方法通过Broadcast进行广播到各个计算节点。
package spark.examples.streaming
import java.sql.{PreparedStatement, Connection, DriverManager}
import java.util.concurrent.atomic.AtomicInteger
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
//No need to call Class.forName("com.mysql.jdbc.Driver") to register Driver?
object SparkStreamingForPartition {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("NetCatWordCount")
conf.setMaster("local[3]")
val ssc = new StreamingContext(conf, Seconds(5))
//This ds
tream object represents the stream of data that will be received from the data
//server. Each record in this DStream is a line of text
//The DStream is a collection of RDD, which makes the method foreachRDD reasonable
val dstream = ssc.socketTextStream("192.168.26.140", 9999)
dstream.foreachRDD(rdd => {
//embedded function
def func(records: Iterator[String]) {
var conn: Connection = null
var stmt: PreparedStatement = null
try {
val url = "jdbc:mysql://192.168.26.140:3306/person";
val user = "root";
val password = ""
conn = DriverManager.getConnection(url, user, password)
records.flatMap(_.split(" ")).foreach(word => {
val sql = "insert into TBL_WORDS(word) values (?)";
stmt = conn.prepareStatement(sql);
stmt.setString(1, word)
stmt.executeUpdate();
})
} catch {
case e: Exception => e.printStackTrace()
} finally {
if (stmt != null) {
stmt.close()
}
if (conn != null) {
conn.close()
}
}
}
val repartitionedRDD = rdd.repartition(3)
repartitionedRDD.foreachPartition(func)
})
ssc.start()
ssc.awaitTermination()
}
}