- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- 从零开始玩转TensorFlow:小明的机器学习故事 3
山海青风
#机器学习机器学习tensorflow人工智能
下面是一篇以小明为主角,尝试用TensorFlow预测校园活动参与率的学习故事。我们会在故事情境中穿插对线性回归和逻辑回归的原理介绍,并附带必要的代码示例,帮助你从零基础理解并动手实践。文章结尾还有简要的分析总结。小明的第一次机器学习实验场景:预测校园活动的参与率小明最近加入了学生会,负责策划校园活动。每次活动都需要准备场地、宣传物料和餐饮,但经常会出现场地过小或准备物资不足等问题。为了让活动准备
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- Code Less, Create More丨AI FOR CODE 创意挑战赛即将开幕!
小小宇宙中微子
人工智能
在AICoding蓬勃发展的大背景下,全球开发者对智能化工具的依赖度攀升。据Gartner预测,2028年AI辅助编程渗透率将突破75%。开发者正面临着从“工具使用者”到“AI协同创新者”的身份转移。为促进AI编程技术交流与创新思维的碰撞,稀土掘金联合Trae共同发起【AIFORCODE创意挑战赛】,汇聚来自不同背景、不同经验的开发者,共同探索AI与编程结合的创意边界。扫码预约直播3月3日18:0
- 卷积神经网络八股(一)------20行代码搞定鸢尾花分类
有幸添砖java
opencv
编写不易,未有VIP但想白嫖文章的朋友可以关注我的个人公众号“不秃头的码农”直接查看文章,后台回复java资料、单片机、安卓可免费领取资源。你的支持是我最大的动力!卷积神经网络八股(一)------20行代码搞定鸢尾花分类引言用TensorflowAPI:tf.keras实现神经网络搭建八股Sequential的用法compile的用法fit的用法(batch是每次喂入神经网络的样本数、epoch
- 2024年Agent AI:Agent AI的基本概念、关键技术、应用前景、未来展望
大模型部署
人工智能langchain程序员知识图谱LLMAI大模型编程
在2024年,人工智能领域迎来了一个新的里程碑——AgentAI的兴起。AgentAI,即代理智能,是一种能够感知并在不同领域和应用中采取行动的系统。它不仅是人工智能研究的一个新方向,更是通向人工通用智能(AGI)的一条充满希望的途径。本文将详细介绍AgentAI的基本概念、关键技术和应用前景。一、AgentAI的基本概念AgentAI,或称代理智能,是指一类能够感知环境、理解情境并在此基础上执行
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- 0092:小明养猪的故事(C++)
王.Victoria
c++编程语言
小明养猪的故事描述话说现在猪肉价格这么贵,小明也开始了养猪生活。说来也奇怪,他养的猪一出生第二天开始就能每天中午生一只小猪,而且生下来的竟然都是母猪。不过光生小猪也不行,小明采用了一个很奇特的办法来管理他的养猪场:对于每头刚出生的小猪,在它生下第二头小猪后立马被杀掉,卖到超市里。假设在创业的第一天,小明只买了一头刚出生的小猪,请问,在第N天晚上,小明的养猪场里还存有多少头猪?输入测试数据的第一行是
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- 终于明白了!人工智能、机器学习、深度学习、集成学习及大模型的定义与联系
大模型玩家
人工智能机器学习深度学习产品经理算法学习方法集成学习
在当今快速发展的科技领域,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL)、集成学习(EnsembleLearning)以及大模型(LargeModels)等概念频繁出现在人们的视野中。它们不仅推动了科技的进步,也深刻影响了社会生活的方方面面。本文将对这些概念进行全面解析,并探讨它们之间的联
- 神经网络八股(3)
SylviaW08
神经网络人工智能深度学习
1.什么是梯度消失和梯度爆炸梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。梯度爆炸是指梯度在方向传播过程中逐渐变大,权重参数更新变化较大,导致损失函数的上下跳动,导致训练不稳定可以使用一些合理的损失函数如relu,leakRelu,归一化处理,batchnorm,确保神经元的输出值在合理的范围内2.为什么需要特
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- GB 44497-2024《智能网联汽车 自动驾驶数据记录系统》标准解读
daopuyun
新型技术测试汽车自动驾驶人工智能
GB44497-2024《智能网联汽车自动驾驶数据记录系统》是由工业和信息化部提出并归口的强制性国家标准,由国家市场监督管理总局、国家标准化管理委员会于2024年8月23日批准发布(国家标准公告2024年第18号文),将于2026年1月1日起实施。标准规定了智能网联汽车自动驾驶数据记录系统的技术要求、试验方法、同一型式判定等。本标准适用于M类和N类车辆配备的自动驾驶数据记录系统。GB44497-2
- 密码学系列(三):区块链+密码学基础知识
Juno07
密码学区块链
密码学系列(三):区块链+密码学基础知识一、区块链的概念区块链概述区块链的特点区块链变化市场现状二、区块链政策与标准区块链的特点与发展三、区块链的定义区块链的价值四、区块链开发语言五、区块链应用领域补充:一、区块链的概念区块链概述区块链是一个不断增长的记录列表,每一个记录被称为区块,使用密码学技术连接在一起。每个块包含前一个块的密码散链的时间戳和交易数据((通常表示为默克尔树)。因为每个区块都包含
- 【邀请函】计算巢:加速软件上云之旅——2024-12-18 见!
云计算
报名链接>>点我报名!<<时间2024/12/1813:30-17:00地点阿里巴巴朝阳科技园B区B4-B07水月山庄内容随着软件上云的深入,涉及基础设施、数据和应用层的相关云产品使用已成为上云过程中常见的难点。阿里云计算巢和云市场致力于为服务商和用户提供高效、便捷、安全的服务使用体验。为了更好地服务软件商业化,我们特举办此次AUG北京站沙龙活动,深入探讨软件上云的趋势,介绍阿里云在商业化软件方面
- 新型电力系统中实现充电桩有序充电和智能化管理解决策略
安科瑞王盼盼wx18721098782
物联网安全人工智能
王小姐一、充电桩运营管理(一)设施建设与布局规划市场调研与需求分析深入研究所在地区的电动汽车保有量增长趋势、潜在用户分布以及不同区域的出行特点。例如,在城市中心商业区,由于人流量大、车辆停留时间相对较短,可适当增加快充桩的比例;而在居民小区,考虑到用户夜间充电需求较大,慢充桩更为合适。与政府部门、房地产开发商等合作,获取城市规划、新建小区建设等信息,提前布局充电桩设施,确保充电桩的建设与城市发展和
- 【Unity 城市环境构建插件】Modern City Package 提供各种高质量的建筑、道路、景观、交通工具和环境特效资源,迅速创建一个充满现代感的城市场景
Unity游戏资源学习屋
Unity插件
ModernCityPackage是一款专为Unity提供的城市环境构建插件,旨在帮助开发者快速创建现代化城市场景。它包含了城市中常见的建筑、道路、景观、交通工具和其他城市环境元素,能够让开发者在短时间内搭建出一个富有现代感的城市环境,适用于游戏、虚拟现实(VR)、建筑可视化等多种项目。主要特点:1.高质量现代建筑资源现代建筑风格:插件提供了多种现代化建筑模型,包括高楼大厦、商业建筑、住宅楼、办公
- 学习心得体会:深入探讨大语言模型的世界——读《自然语言处理:大模型理论与实践》(预览版)有感
Nuyoah_610
自然语言处理学习语言模型
《自然语言处理:大模型理论与实践》(预览版)由赵宇教授编写,是一本深入探讨大语言模型世界的专业著作。作为一名正在学习和研究自然语言处理的学生,这本书为我提供了宝贵的理论基础和实践指导。《自然语言处理:大模型理论与实践》教材官网:首页|自然语言处理:大模型理论与实践赵宇教授简介西南财经大学教授,博导,四川省学术和技术带头人后备人选,金融智能与金融工程四川省重点实验室副主任,通用人工智能与数字经济创新
- AI工具 | 每个打工人必备的15款人工智能超级工具
Qingmu2024
AIGC(文本图像视频)特训营人工智能AIGC
咱们得面对一个残酷的事实:大多数“人工智能”工具本质上华而不实,往往没什么用。不过,还是有一些靠谱的人工智能平台,它们可不只是营销噱头。有些AI公司正试图改变游戏规则。人工智能工具让人们能够更聪明地工作,而不是更辛苦地劳作。如果你想知道未来有什么,那就来看看这10款人工智能工具吧,它们将彻底改变我们的工作方式。1.AI驱动的插画和动态设计网址:https://lottiefiles.com/lot
- AI安全全景解析:从数据到模型的全方位防护
金外飞176
网络空间安全人工智能安全
AI安全全景解析:从数据到模型的全方位防护引言随着AI技术在金融、医疗、自动驾驶等领域的深度应用,安全风险呈现指数级增长。Gartner预测,到2025年将有30%的企业因AI安全漏洞遭受重大损失。本文从数据安全、模型安全、部署安全三大维度,详解AI全生命周期防护技术。一、AI安全核心风险矩阵风险类型典型场景技术影响数据投毒训练数据被恶意篡改模型准确性下降模型窃取黑盒攻击获取模型参数知识产权泄露对
- 人人都看得懂的DeepSeek入门科普
程序员一一涤生
当大家都在好奇下一代AI会怎样改变我们的工作与生活时,中国公司DeepSeek正以惊人的速度和态度闯进大众视野。它究竟是什么,能做什么,又为何能在AI热潮里高调崭露头角?本文带你了解DeepSeek及其最新推出的两款大模型,顺便一起讨论它如何搅动整个AI行业的水面。1.DeepSeek是什么?DeepSeek=AI+国产+免费+开源+强大DeepSeek是一家专注通用人工智能(AGI)的中国科技公
- 【2025最新】ChatGPT国内直连中文版镜像网站
J19109690198
chatgpt人工智能论文笔记gptAI写作
1.快速导航点此立即Chat直接访问2.两者对比项目官网镜像支付手段国际支付国内支付封禁策略网站检测,可能随时封禁采用更灵活的绕过策略,不易封禁价格每月140元订阅费用+每年70元虚拟卡一个月低至19.99元随用性需要固定订阅灵活选择,满足多种需求语音功能必须下载APP才能使用暂不支持语音功能智能程度官方最新模型与官网一致,模型更新及时次数限制3小时40条请求无限制,突破任何限制3.使用教程点击文
- 为AI聊天工具添加一个知识系统 之122 详细设计之63 实体范畴论和神经元元模型:命名法函子
一水鉴天
智能制造软件智能人工语言人工智能
本文要点要点本文讨论:实体的范畴论(三套论法):一元论、二元论和三元论。神经元元模型(三层含义)暨三种神经网络构造型既神经元三个功能约束即神经细胞元元模型。”注:第一行是实体的范畴论的三种论法。主角是实体,配角是可以以三种论调来“论”的“范畴”从三种论调或主张中我们能知道“元”是专属字,通过理解可以是“变元”agument,--调动实参第二行是“神经元元模型”的三层含义(或元元模型统摄的三个三种方
- 巴西Slot棋牌游戏出海投放Facebook脸书代投广告优势
电报_@ye001111
游戏facebook
巴西Slot游戏出海投放Facebook广告优势研究报告引言在全球游戏市场中,巴西作为一个充满潜力的新兴市场,正吸引着越来越多的游戏开发商的目光。特别是Slot游戏,凭借其独特的魅力和广泛的受众基础,在巴西市场上展现出巨大的增长潜力。而Facebook作为全球最大的社交媒体平台之一,在巴西拥有庞大的用户基数和高度活跃的社交互动,为Slot游戏的出海投放提供了得天独厚的优势。本报告将深入分析巴西Sl
- 谁才是 AI 的“第一语言”?Python 与 Java 的较量
CarlowZJ
人工智能pythonjava
在人工智能(AI)领域,编程语言的选择至关重要,它直接影响到开发效率、模型性能和应用部署的便利性。近年来,Python和Java在AI领域的竞争愈发激烈。本文将探讨这两种语言在AI开发中的优劣,并分析谁更有可能成为AI的“第一语言”。一、Python:AI开发的“王者”Python在AI领域的主导地位由来已久。自2021年10月登顶TIOBE榜首以来,Python至今稳居第一,并第六次摘下了TIO
- 第七个问题 - 什么是AIGC?它和LLM是什么关系?
释迦呼呼
AI一千问AIGC人工智能机器学习深度学习自然语言处理语言模型
AIGC(人工智能生成内容)和LLM(大语言模型)是当前人工智能领域的两个核心概念,它们既有紧密联系,又有明确区别。以下是详细解析:一、什么是AIGC?AIGC(AI-GeneratedContent,人工智能生成内容)指由人工智能系统自动生成的各类数字化内容,涵盖文本、图像、音频、视频、代码、3D模型等多种形式。其核心是让AI模型学习数据分布后,按需生成符合人类需求的内容。AIGC的关键特点:多
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分