【AI理论学习】手把手利用PyTorch实现扩散模型DDPM

手把手利用PyTorch实现扩散模型DDPM

  • DDPM代码实现
    • 神经网络
      • 定义辅助函数
      • 位置嵌入
      • ResNet block
      • 注意力模块
      • 分组归一化
      • Conditional U-Net
    • 定义前向扩散过程
    • 定义PyTorch数据集+DataLoader
    • 采样
    • 训练模型
    • 采样
    • 后续阅读
  • 参考链接

上一篇博文已经手把手推导了扩散模型DDPM,本文利用PyTorch在Google Colab notebook中实现扩散模型。

DDPM代码实现

注意,扩散模型有几种观点。在这里,我们采用discrete-time(潜变量模型)的观点,但请务必查看其他观点。

神经网络

神经网络需要在特定的时间步接收噪声图像,并返回预测的噪声。需要注意的是,预测的噪声是一个与输入图像具有相同大小/分辨率的张量。因此从技术上讲,网络接收和输出具有相同形状的张量。在这种情况下,可以使用什么类型的神经网络呢?

在这里通常使用的方法与自编码器(Autoencoder)非常相似,你可能还记得它出现在典型的“intro to deep learning门”教程中。Autoencoders在encoder和decoder之间具有一个所谓的“bottleneck”层。编码器首先将图像编码为较小的隐藏表示,称为“bottleneck”,然后解码器将该隐表示解码回实际图像。这迫使网络在瓶颈层中仅保留最重要的信息。

在体系结构方面,DDPM 的作者采用了一个 U-Net 结构,该结构由(Ronneberger等人,2015)引入,当时在医学图像分割领域取得了最先进的结果。这个网络,像任何自编码器一样,由一个位于中间的瓶颈层组成,确保网络仅学习最重要的信息。重要的是,它在编码器和解码器之间引入了残差连接,大大改善了梯度流动(灵感来自于 He等人,2015年的 ResNet)。
【AI理论学习】手把手利用PyTorch实现扩散模型DDPM_第1张图片
如图所示,U-Net 模型首先对输入进行下采样(即在空间分辨率方面使输入变小),然后进行上采样

接下来,我们逐步实现这个网络。

!pip install -q -U einops datasets matplotlib tqdm

导入相关依赖库

import math
from inspect import isfunction
from functools import partial

%matplotlib inline
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
from einops import rearrange, reduce
from einops.layers.torch import Rearrange

import torch
from torch import nn, einsum
import torch.nn.functional as F

定义辅助函数

首先,定义一些在实现神经网络时将使用的辅助函数和类。重要的是,定义了一个残差模块,它将输入简单地添加到特定函数的输出中(换句话说,将残差连接添加到特定函数中)。

def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def num_to_groups(num, divisor):
    groups = num // divisor
    remainder = num % divisor
    arr = [divisor] * groups
    if remainder > 0:
        arr.append(remainder)
    return arr


class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        return self.fn(x, *args, **kwargs) + x

我们还为上采样和下采样操作定义了别名。

def Upsample(dim, dim_out=None):
    return nn.Sequential(
        nn.Upsample(scale_factor=2, mode='nearest'),
        nn.Conv2d(dim, default(dim_out, dim), 3, padding=1),
    )


def Downsample(dim, dim_out=None):
    # 不再有阶梯卷积或池
    return nn.Sequential(
        Rearrange("b c (h p1) (w p2) -> b (c p1 p2) h w", p1=2, p2=2),
        nn.Conv2d(dim * 4, default(dim_out, dim), 1),
    )

位置嵌入

由于神经网络的参数在不同时间(噪声水平)之间共享,作者采用了受 Transformer(Vaswani et al., 2017)启发的正弦位置嵌入(sinusoidal position embeddings)来编码 t t t。这使得神经网络可以“know”它正在处理批次中的每个图像的特定时间步(噪声水平)。

SinusoidalPositionEmbeddings 模块接受形状为(batch_size,1)的张量作为输入(即批次中多个带噪声图像的噪声水平),并将其转换为形状为(batch_size,dim)的张量,其中 dim 是位置嵌入的维度。然后将其添加到每个残差块中,我们将在后面看到。

class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, time):
        device = time.device
        half_dim = self.dim // 2
        embeddings = math.log(10000) / (half_dim - 1)
        embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
        embeddings = time[:, None] * embeddings[None, :]
        embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
        return embeddings

总之就是将 t t t 编码为embedding,和原本的输入一起进入网络,让网络“知道”当前的输入属于哪个step。

ResNet block

接下来,定义 U-Net 模型的核心构建块。DDPM 的作者使用了 Wide ResNet block(Zagoruyko et al., 2016),但 Phil Wang 将标准卷积层替换为“weight standardized”版本,这与分组归一化的结合效果更好(有关详细信息,请参见(Kolesnikov et al., 2019))。

class WeightStandardizedConv2d(nn.Conv2d):
    """
    https://arxiv.org/abs/1903.10520
    weight standardization purportedly works synergistically with group normalization
    """
    def forward(self, x):
        eps = 1e-5 if x.dtype == torch.float32 else 1e-3

        weight = self.weight
        mean = reduce(weight, "o ... -> o 1 1 1", "mean")
        var = reduce(weight, "o ... -> o 1 1 1", partial(torch.var, unbiased=False))
        normalized_weight = (weight - mean) * (var + eps).rsqrt()

        return F.conv2d(
            x,
            normalized_weight,
            self.bias,
            self.strides,
            self.padding,
            self.dilation,
            self.groups,
        )

class Block(nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super().__init__()
        self.proj = WeightStandardizedConv2d(dim, dim_out, 3, padding=1)
        self.norm = nn.GroupNorm(groups, dim_out)
        self.act = nn.SiLU()

    def forward(self, x, scale_shift=None):
        x = self.proj(x)
        x = self.norm(x)

        if exists(scale_shift):
            scale, shift = scale_shift
            x = x * (scale + 1) + shift

        x = self.act(x)
        return x


class ResnetBlock(nn.Module):
    """https://arxiv.org/abs/1512.03385"""
    def __init__(self, dim, dim_out, *, time_emb_dim=None, groups=8):
        super().__init__()
        self.mlp = (
            nn.Sequential(nn.SiLU(), nn.Linear(time_emb_dim, dim_out * 2))
            if exists(time_emb_dim)
            else None
        )

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()

    def forward(self, x, time_emb = None):
        scale_shift = None
        if exists(self.mlp) and exists(time_emb):
            time_emb = self.mlp(time_emb)
            time_emb = rearrange(time_emb, "b c -> b c 1 1")
            scale_shift = time_emb.chunk(2, dim=1)

        h = self.block1(x, scale_shift=scale_shift)
        h = self.block2(h)
        return h + self.res_conv(x)

注意力模块

现在,定义注意力模块,这是 DDPM 的作者在卷积块之间添加的。注意力是著名的 Transformer 架构(Vaswani et al., 2017)的构建块,在人工智能的各个领域,从自然语言处理和视觉到蛋白质折叠都取得了巨大的成功。Phil Wang 使用了两种注意力的变体:一种是常规的多头自注意力(multi-head self-attention)(就像在 Transformer 中使用的那样),另一种是线性注意力变体(linear attention variant)(Shen et al., 2018),其时间和内存要求与序列长度线性缩放,而不是常规注意力的二次缩放。

关于注意力机制的详细解释,请参阅 Jay Allamar 的精彩博客文章。

class Attention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim=1)
        q, k, v = map(
            lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv
        )
        q = q * self.scale

        sim = einsum("b h d i, b h d j -> b h i j", q, k)
        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        out = einsum("b h i j, b h d j -> b h i d", attn, v)
        out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w)
        return self.to_out(out)


class LinearAttention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1), nn.GroupNorm(1, dim))

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim=1)
        q, k, v = map(
            lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv
        )
        q = q.softmax(dim=2)
        k = k.softmax(dim=-1)

        q = q * self.scale
        context = torch.einsum("b h d n, b h e n -> b h d e", k, v)

        out = torch.einsum("b h d e, b h d n -> b h e n", context, q)
        out = rearrange(out, "b h c (x y) -> b (h c) x y", h=self.heads, x=h, y=w)
        return self.to_out(out)

分组归一化

DDPM 的作者在 U-Net 的卷积/注意力层之间交错使用了分组归一化group normalization)(Wu et al., 2018)。在下面,定义了一个 PreNorm 类,该类将在注意力层之前应用分组归一化,正如我们将在后面看到的。值得注意的是,关于在 Transformer 中是在注意力之前还是之后应用归一化一直存在争议。

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.fn = fn
        self.norm = nn.GroupNorm(1, dim)

    def forward(self, x):
        x = self.norm(x)
        return self.fn(x)

Conditional U-Net

现在,我们已经定义了所有构建块(position embeddings,ResNet blocks,attention和group normalization),现在该定义整个神经网络了。回想一下网络 ϵ θ ( x t , t ) \boldsymbol{\epsilon}_\theta\left(\mathbf{x_t}, t\right) ϵθ(xt,t)的工作是获取一批有噪声的图像及其各自的噪声水平,并输出添加到输入的噪声。更正式地说:

  • 网络采集一批形状为(batch_size, num_channels, height, width)的噪声图像和一批形状为 (batch_size, 1)的噪声水平作为输入,并返回一个形状为 (batch_size, num_channels, height, width)的张量

网络构建如下:

  • 首先,在一批有噪声的图像上应用卷积层,并计算噪声水平的位置嵌入(position embeddings)
  • 然后,执行一系列的下采样阶段(downsampling stages)。每个下采样阶段由2个ResNet blocks+ groupnorm+ attention+residual connection+a downsample operation组成
  • 在网络的中间,再次应用ResNet block,与attention交错
  • 接下来,执行一系列上采样阶段(upsampling stages)。每个上采样阶段由2个ResNet blocks + groupnorm +attention + residual connection + an upsample operation组成
  • 最后,在一个卷积层后面应用一个ResNet block。

最终,神经网络就像乐高积木一样层层堆叠(但了解它们是如何工作的很重要)。

class Unet(nn.Module):
    def __init__(self, dim, init_dim=None, out_dim=None, dim_mults=(1, 2, 4, 8), channels=3, self_condition=False,
                 resnet_block_groups=4):
        super().__init__()
        # determine dimensions
        self.channels = channels
        self.self_condition = self_condition
        input_channels = channels * (2 if self_condition else 1)

        init_dim = default(init_dim, dim)
        self.init_conv = nn.Conv2d(input_channels, init_dim, 1, padding=0)  #  changed to 1 and 0 from 7,3

        dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        block_klass = partial(ResnetBlock, groups=resnet_block_groups)

        # time embeddings
        time_dim = dim * 4
        self.time_mlp = nn.Sequential(
            SinusoidalPositionEmbeddings(dim),
            nn.Linear(dim, time_dim),
            nn.GELU(),
            nn.Linear(time_dim, time_dim),
        )

        # layers
        self.downs = nn.ModuleList([])
        self.ups = nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)
            self.downs.append(
                nn.ModuleList(
                    [
                        block_klass(dim_in, dim_in, time_emb_dim=time_dim),
                        block_klass(dim_in, dim_in, time_emb_dim=time_dim),
                        Residual(PreNorm(dim_in, LinearAttention(dim_in))),
                        Downsample(dim_in, dim_out)
                        if not is_last
                        else nn.Conv2d(dim_in, dim_out, 3, padding=1),
                    ]
                )
            )
        mid_dim = dims[-1]
        self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)
        self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))
        self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim)

        for ind, (dim, dim_out) in enumerate(reversed(in_out)):
            is_last = ind == (len(in_out) - 1)
            self.ups.append(
                nn.ModuleList(
                    [
                        block_klass(dim_out + dim_in, dim_out, time_emb_dim=time_dim),
                        block_klass(dim_out + dim_in, dim_out, time_emb_dim=time_dim),
                        Residual(PreNorm(dim_out, LinearAttention(dim_out))),
                        Upsample(dim_out, dim_in)
                        if not is_last
                        else nn.Conv2d(dim_out, dim_in, 3, padding=1),
                    ]
                )
            )
        self.out_dim = default(out_dim, channels)
        self.final_res_block = block_klass(dim * 2, dim, time_emb_dim=time_dim)
        self.final_conv = nn.Conv2d(dim, self.out_dim, 1)

    def forward(self, x, time, x_self_cond=None):
        if self.self_condition:
            x_self_cond = default(x_self_cond, lambda: torch.zeros_like(x))
            x = torch.cat((x_self_cond, x), dim=1)

        x = self.init_conv(x)
        r = x.clone()

        t = self.time_mlp(time)

        h = []
        for block1, block2, attn, downsample in self.downs:
            x = block1(x, t)
            h.append(x)

            x = block2(x, t)
            x = attn(x)
            h.append(x)

            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, t)

        for block1, block2, attn, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = block1(x, t)

            x = torch.cat((x, h.pop()), dim=1)
            x = block2(x, t)
            x = attn(x)

            x = upsample(x)

        x = torch.cat((x, r), dim=1)
        x = self.final_res_block(x, t)
        return self.final_conv(x)

定义前向扩散过程

forward diffusion process在 T T T个时间步内逐渐将噪声从真实分布添加到图像中,这是根据variance schedule发生的。最初的DDPM作者采用了linear schedule

我们将前向过程的方差设置为线性增加的常数 from β 1 = 1 0 − 4 \beta_1=10^{-4} β1=104 to β T = 0.02 \beta_T=0.02 βT=0.02.

然而,在(Nichol et al.,2021)中表明,使用cosine schedule可以获得更好的结果。下面,我们定义 T T T个时间步的不同的schedule(我们稍后会选择一个):

def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule as proposed in https://arxiv.org/abs/2102.09672
    """
    steps = timesteps + 1
    x = torch.linspace(0, timesteps, steps)
    alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0.0001, 0.9999)

def linear_beta_schedule(timesteps):
    beta_start = 0.0001
    beta_end = 0.02
    return torch.linspace(beta_start, beta_end, timesteps)

def quadratic_beta_schedule(timesteps):
    beta_start = 0.0001
    beta_end = 0.02
    return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps) ** 2

def sigmoid_beta_schedule(timesteps):
    beta_start = 0.0001
    beta_end = 0.02
    betas = torch.linspace(-6, 6, timesteps)
    return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start

首先,使用T=300个时间步的linear schedule,并从 β t \beta_t βt中定义我们需要的变量,例如,方差的累积乘积KaTeX parse error: Undefined control sequence: \bat at position 1: \̲b̲a̲t̲{\alpha}_t。下面的每个变量都只是一维张量,存储从 t t t T T T的数值。注意,我们还定义了一个extract函数,它允许我们按照 t t t提取一个批次的索引。

timesteps = 300

# define beta schedule
betas = linear_beta_schedule(timesteps=timesteps)

# define alphas
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas)

# calculations for diffusion q(x_t | x_{t-1}) and others
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)

# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)

def extract(a, t, x_shape):
    batch_size = t.shape[0]
    out = a.gather(-1, t.cpu())
    return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)

我们将用猫图像说明如何在扩散过程的每个时间步中添加噪声:

from PIL import Image
import requests

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw) # PIL image of shape HWC
image

【AI理论学习】手把手利用PyTorch实现扩散模型DDPM_第2张图片
将噪声添加到Pytorch张量,而不是Pillow Images中。首先定义能够将PIL图像转换为Pytorch张量(可以在上面添加噪声)的图像转换,反之亦然。

这些转换非常简单:我们首先通过除以255(其结果能在[0,1]范围),然后确保它们在[-1,1]范围。DDPM 文中提到:

我们假设图像数据由在集合{ 0 ,1 、. . . , 255}中的整数组成,然后线性缩放到[−1, 1]。 这确保了神经网络逆向过程能够从标准正态先验 p ( x T ) p(x_T) p(xT)开始且一致缩放的输入上运行。"

from torchvision.transforms import Compose, ToTensor, Lambda, ToPILImage, CenterCrop, Resize

image_size = 128
transform = Compose([
    Resize(image_size),
    CenterCrop(image_size),
    ToTensor(),  # turn into torch Tensor of shape CHW, divide by 255
    Lambda(lambda t: (t * 2) - 1),

])

x_start = transform(image).unsqueeze(0)
x_start.shape

输出结果:
torch.Size([1, 3, 128, 128])

另外,还定义了反向变换(reverse transform),它接收一个PyTorch张量,其中包含[-1,1],并将它们重新转换回PIL图像:

import numpy as np

reverse_transform = Compose([
     Lambda(lambda t: (t + 1) / 2),
     Lambda(lambda t: t.permute(1, 2, 0)), # CHW to HWC
     Lambda(lambda t: t * 255.),
     Lambda(lambda t: t.numpy().astype(np.uint8)),
     ToPILImage(),
])
reverse_transform(x_start.squeeze())

【AI理论学习】手把手利用PyTorch实现扩散模型DDPM_第3张图片
现在,可以像论文中定义前向扩散过程:

# forward diffusion (using the nice property)
def q_sample(x_start, t, noise=None):
    if noise is None:
        noise = torch.randn_like(x_start)

    sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, x_start.shape)
    sqrt_one_minus_alphas_cumprod_t = extract(
        sqrt_one_minus_alphas_cumprod, t, x_start.shape
    )

    return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise

在特定的时间步中进行测试:

def get_noisy_image(x_start, t):
  # add noise
  x_noisy = q_sample(x_start, t=t)

  # turn back into PIL image
  noisy_image = reverse_transform(x_noisy.squeeze())

  return noisy_image
# take time step
t = torch.tensor([40])

get_noisy_image(x_start, t)

【AI理论学习】手把手利用PyTorch实现扩散模型DDPM_第4张图片
可视化不同时间步的结果:

import matplotlib.pyplot as plt

# use seed for reproducability
torch.manual_seed(0)

# source: https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
def plot(imgs, with_orig=False, row_title=None, **imshow_kwargs):
    if not isinstance(imgs[0], list):
        # Make a 2d grid even if there's just 1 row
        imgs = [imgs]

    num_rows = len(imgs)
    num_cols = len(imgs[0]) + with_orig
    fig, axs = plt.subplots(figsize=(200,200), nrows=num_rows, ncols=num_cols, squeeze=False)
    for row_idx, row in enumerate(imgs):
        row = [image] + row if with_orig else row
        for col_idx, img in enumerate(row):
            ax = axs[row_idx, col_idx]
            ax.imshow(np.asarray(img), **imshow_kwargs)
            ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])

    if with_orig:
        axs[0, 0].set(title='Original image')
        axs[0, 0].title.set_size(8)
    if row_title is not None:
        for row_idx in range(num_rows):
            axs[row_idx, 0].set(ylabel=row_title[row_idx])

    plt.tight_layout()
plot([get_noisy_image(x_start, torch.tensor([t])) for t in [0, 50, 100, 150, 199]])

【AI理论学习】手把手利用PyTorch实现扩散模型DDPM_第5张图片
在给定模型的情况下定义损失函数:

def p_losses(denoise_model, x_start, t, noise=None, loss_type="l1"):
    if noise is None:
        noise = torch.randn_like(x_start)

    x_noisy = q_sample(x_start=x_start, t=t, noise=noise)
    predicted_noise = denoise_model(x_noisy, t)

    if loss_type == 'l1':
        loss = F.l1_loss(noise, predicted_noise)
    elif loss_type == 'l2':
        loss = F.mse_loss(noise, predicted_noise)
    elif loss_type == "huber":
        loss = F.smooth_l1_loss(noise, predicted_noise)
    else:
        raise NotImplementedError()

    return loss

dnoise_model就是上面定义的U-Net。在真实噪声和预测噪声之间使用Huber损失

定义PyTorch数据集+DataLoader

这里定义一个常规的PyTorch数据集。该数据集仅由真实数据集(如Fashion、MNIST、CIFAR-10或ImageNet)的图像组成,线性缩放至 [ − 1 , 1 ] [-1,1] [1,1]
每个图像都被调整为相同的大小,同时是随机水平翻转的。从论文中:

我们在 CIFAR10 的训练过程中使用了随机水平翻转;我们尝试了有翻转和没有翻转的训练,发现翻转可以稍微提高样本质量。

在这里,使用Datasets库轻松地从hub加载 Fashion MNIST 数据集。该数据集由已经具有相同分辨率的图像组成,即 28x28。

from datasets import load_dataset

# load dataset from the hub
dataset = load_dataset('fashion_mnist')
image_size = 28
channels = 1
batch_size = 128

接下来,定义一个函数,将在整个数据集上即时应用它。为此使用该with_transform功能。该函数只是应用了一些基本的图像预处理:随机水平翻转、重新缩放并最终使它们在[-1,1]范围。

from torchvision import transforms
from torch.utils.data import DataLoader

# define image transformations(e.g. using torchvision)
transform = Compose([
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Lambda(lambda t: (t * 2) -1)
])

# define function
def transforms(examples):
   examples["pixel_values"] = [transform(image.convert("L")) for image in examples["image"]]
   del examples["image"]

   return examples

transformed_dataset = dataset.with_transform(transforms).remove_columns("label")

# create dataloader
dataloader = DataLoader(transformed_dataset["train"], batch_size=batch_size, shuffle=True)
batch = next(iter(dataloader))
print(batch.keys())  # dict_keys(['pixel_values'])

采样

由于将在训练期间从模型中采样(来跟踪进度),因此定义了下面的代码。采样方法总结如下:

从扩散模型生成新图像是通过逆扩散过程来实现的:从 T T T开始,从高斯分布中采样纯噪声,然后使用神经网络逐渐去噪(使用它学到的条件概率),直到在时间步 t = 0 t=0 t=0结束。如上所示,可以得到一个稍微降噪的图像 x t − 1 x_{t-1} xt1通过使用我们的噪声预测器插入均值的重新参数化。注意,方差是提前知道的。

理想情况下,最终会得到一张看起来像是来自真实数据分布的图像。下面的代码实现了这一点。

@torch.no_grad()
def p_sample(model, x, t, t_index):
    betas_t = extract(betas, t, x.shape)
    sqrt_one_minus_alphas_cumprod_t = extract(
        sqrt_one_minus_alphas_cumprod, t, x.shape
    )
    sqrt_recip_alphas_t = extract(sqrt_recip_alphas, t, x.shape)
    
    # Equation 11 in the paper
    # Use our model (noise predictor) to predict the mean
    model_mean = sqrt_recip_alphas_t * (
        x - betas_t * model(x, t) / sqrt_one_minus_alphas_cumprod_t
    )

    if t_index == 0:
        return model_mean
    else:
        posterior_variance_t = extract(posterior_variance, t, x.shape)
        noise = torch.randn_like(x)
        # Algorithm 2 line 4:
        return model_mean + torch.sqrt(posterior_variance_t) * noise 

# Algorithm 2 (including returning all images)
@torch.no_grad()
def p_sample_loop(model, shape):
    device = next(model.parameters()).device

    b = shape[0]
    # start from pure noise (for each example in the batch)
    img = torch.randn(shape, device=device)
    imgs = []

    for i in tqdm(reversed(range(0, timesteps)), desc='sampling loop time step', total=timesteps):
        img = p_sample(model, img, torch.full((b,), i, device=device, dtype=torch.long), i)
        imgs.append(img.cpu().numpy())
    return imgs

@torch.no_grad()
def sample(model, image_size, batch_size=16, channels=3):
    return p_sample_loop(model, shape=(batch_size, channels, image_size, image_size))

训练模型

接下来,以常规 PyTorch 方式训练模型。我们还定义了一些逻辑来定期保存生成的图像,使用上面定义的sample定义的方法。

from pathlib import Path

def num_to_groups(num, divisor):
    groups = num // divisor
    remainder = num % divisor
    arr = [divisor] * groups
    if remainder > 0:
        arr.append(remainder)
    return arr

results_folder = Path("./results")
results_folder.mkdir(exist_ok = True)
save_and_sample_every = 1000

下面,定义模型,并将其移动到GPU,还定义了一个标准优化器(Adam)。

from torch.optim import Adam

device = "cuda" if torch.cuda.is_available() else "cpu"

model = Unet(
    dim=image_size,
    channels=channels,
    dim_mults=(1, 2, 4,)
)
model.to(device)

optimizer = Adam(model.parameters(), lr=1e-3)

开始训练:

from torchvision.utils import save_image

epochs = 6

for epoch in range(epochs):
    for step, batch in enumerate(dataloader):
      optimizer.zero_grad()

      batch_size = batch["pixel_values"].shape[0]
      batch = batch["pixel_values"].to(device)

      # Algorithm 1 line 3: sample t uniformally for every example in the batch
      t = torch.randint(0, timesteps, (batch_size,), device=device).long()

      loss = p_losses(model, batch, t, loss_type="huber")

      if step % 100 == 0:
        print("Loss:", loss.item())

      loss.backward()
      optimizer.step()

      # save generated images
      if step != 0 and step % save_and_sample_every == 0:
        milestone = step // save_and_sample_every
        batches = num_to_groups(4, batch_size)
        all_images_list = list(map(lambda n: sample(model, batch_size=n, channels=channels), batches))
        all_images = torch.cat(all_images_list, dim=0)
        all_images = (all_images + 1) * 0.5
        save_image(all_images, str(results_folder / f'sample-{milestone}.png'), nrow = 6)

训练过程:

Loss: 0.5570111274719238
Loss: 0.06583500653505325
Loss: 0.06006840616464615
Loss: 0.051015421748161316
Loss: 0.0394190177321434
Loss: 0.04075610265135765
Loss: 0.039987701922655106
Loss: 0.03415030241012573
Loss: 0.030019590631127357
Loss: 0.036297883838415146
Loss: 0.037256866693496704
Loss: 0.03864285722374916
Loss: 0.03298967331647873
Loss: 0.03331328555941582
Loss: 0.027535393834114075
Loss: 0.03803558647632599
Loss: 0.03721949830651283
Loss: 0.03478413075208664
Loss: 0.03918925300240517
Loss: 0.03608154132962227
Loss: 0.027622627094388008
Loss: 0.02948344498872757
Loss: 0.029868196696043015
Loss: 0.03154699504375458
Loss: 0.029723389074206352
Loss: 0.039195798337459564
Loss: 0.032130151987075806
Loss: 0.031276602298021317
Loss: 0.03440115600824356
Loss: 0.030476151034235954

采样

要从模型中采样,可以使用上面定义的采样函数:

# sample 64 images
samples = sample(model, image_size=image_size, batch_size=64, channels=channels)

# show a random one
random_index = 5
plt.imshow(samples[-1][random_index].reshape(image_size, image_size, channels), cmap="gray")

【AI理论学习】手把手利用PyTorch实现扩散模型DDPM_第6张图片
看起来模型能够生成一件漂亮的 T 恤!请记住,用来训练的数据集的分辨率非常低(28x28)。还可以创建去噪过程的 gif 图像:

import matplotlib.animation as animation

random_index = 53

fig = plt.figure()
ims = []
for i in range(timesteps):
    im = plt.imshow(samples[i][random_index].reshape(image_size, image_size, channels), cmap="gray", animated=True)
    ims.append([im])

animate = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000)
animate.save('diffusion.gif')
plt.show()

后续阅读

注意,DDPM 论文表明,扩散模型是(无)条件图像生成的一个promising的方向。从DDPM提出到现在已经(极大地)得到了改进,尤其是在文本条件图像生成方面。下面,列出了一些截至到2022年6月7日之前的重要的(但远非详尽的)后续工作:

  • Improved Denoising Diffusion Probabilistic Models (Nichol et al., 2021): 发现学习条件分布的方差(除均值外)有助于提高性能
  • Cascaded Diffusion Models for High Fidelity Image Generation (Ho et al., 2021): 引入了级联扩散,它包含多个扩散模型的pipeline,可生成分辨率不断提高的图像,用于高保真图像合成
  • Diffusion Models Beat GANs on Image Synthesis (Dhariwal et al., 2021): 表明扩散模型可以通过改进 U-Net 架构以及引入分类器引导,达到比SOTA生成式模型更好的效果。
  • Classifier-Free Diffusion Guidance (Ho et al., 2021): 表明不需要使用分类器来指导扩散模型,只需要使用单个神经网络联合训练条件扩散模型和无条件扩散模型
  • Hierarchical Text-Conditional Image Generation with CLIP Latents (DALL-E 2) (Ramesh et al., 2022): 使用先验将文字说明转换为 CLIP 图像嵌入,然后使用扩散模型将其解码为图像
  • Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding (ImageGen) (Saharia et al., 2022): 表明将大型预训练语言模型(例如 T5)与级联扩散相结合非常适用于文本到图像合成

参考链接

  1. The Annotated Diffusion Model
  2. 带你深入理解扩散模型DDPM
  3. 扩散模型全新课程:扩散模型从0到1实现!
  4. Denoising Diffusion Probabilitistic Models
  5. 《Diffusion Models Beat GANs on Image Synthesis》阅读笔记
  6. How Diffusion Models Work
  7. DDPM交叉熵损失函数推导
  8. DDPM(Denoising Diffusion Probabilistic Models)扩散模型简述
  9. What are Diffusion Models?
  10. 由浅入深了解Diffusion Model
  11. 什么是Diffusion模型?
  12. Probabilistic Diffusion Model概率扩散模型理论与完整PyTorch代码详细解读
  13. Denoising Diffusion Probabilistic Model, in Pytorch

你可能感兴趣的:(深度学习与人工智能,人工智能,pytorch,扩散模型,DDPM,U-Net,ResNet,Diffusion,Model)