物理思考:爱因斯坦与他的弯曲时空

导读:爱因斯坦与他的弯曲时空是怎么样的?时空是如何弯曲的?广义相对论中提到,具有一定质量的物体可以扭曲它周围的时间与空间,而扭曲程度的大小可以用时空曲率来表示。

做个形象一点的比喻,宇宙原本的时空就像一个无限伸张的弹力床,此时放置一个具有一定质量的天体在上面,那么很自然的那块地方将下沉,就好比下面这幅图:

当物体具备的质量越大时,那么下沉的趋势就越明显,它的时空曲率就越大,时间与空间被扭曲得就越厉害。

黑洞正是时空曲率无限大的天体,天文学家史瓦西计算引力场方程时得出来一个解,这个解表明,如果将大量的物质聚集于空间上某一点,那么那个点周围就会出现不可思议的现象。本章将通过理解运动,来理解弯曲空间。以下内容摘录自灵遁者先生书籍《变化》

内容正文:

大家知道经典力学的一个基本原理是:任何一个物体的运动都可看作是一个不受任何外力的自由运动(惯性运动)和一个偏离于这种自由运动的组合。

这种偏离来自于施加在物体上的外力作用,其大小和方向遵循牛顿第二定律(外力大小等于物体的惯性质量乘以加速度,方向与加速度方向相同)。

而惯性运动与时空的几何性质直接相关:经典力学中在标准参考系下的惯性运动是匀速直线运动。用广义相对论的语言说,惯性运动的轨迹是时空几何上的最短路径(测地线)。

小球落到正在加速的火箭的地板上(左)和落到地球上(右),处在其中的观察者会认为这两种情形下小球的运动轨迹没有什么区别。

反过来,原则上讲也可以通过观察物体的运动状态和外力作用(如附加的电磁力或摩擦力等)来判断物体的惯性运动性质,从而用来定义物体所处的时空几何。不过,当有引力存在时这种方法会产生一些含糊不清之处:牛顿万有引力定律以及多个彼此独立验证的相关实验表明,自由落体具有一个普遍性(亦即惯性质量与引力质量等价),即任何测试质量的自由落体的轨迹只和它的初始位置和速度有关,与构成测试质量的材质等无关。

这一性质的一个简化版本可以通过爱因斯坦的理想实验来说明,如上图所示:对于一个处在狭小的封闭空间中的观察者而言,无法通过观测落下小球的运动轨迹来判断自己是处于地面上的地球引力场中,还是处于一艘无引力作用但正在加速的火箭里(加速度等于地球引力场的重力加速度),而由于引力场在空间中存在分布的变化,弱等效原理需要加上局域的条件,即在足够小的时空区域内引力场中的自由落体运动和均一加速参考系中的惯性运动是完全相同的。

由于自由落体的普遍性,惯性运动(实验中的火箭内)和在引力场中的运动(实验中的地面上)是无法通过观察来区分的。这是在暗示一类新的惯性运动的定义,即在引力作用下的自由落体也属于惯性运动。

通过这种惯性运动则可以重新定义周围的时空几何:从数学来看,引力场中惯性运动的轨迹是弯曲时空的测地线,弯曲时空代表了引力对于物体的轨迹所产生的效应。

从另一个方面可以这样理解:狭义相对论的建立改变了人们对质量唯一性的观念,即质量不过是系统能量和动量的一种表现形式,这使得爱因斯坦着手将弱等效原理纳入一个更广泛的框架中:处于封闭空间中的观察者无论采用什么测量方法(而不仅限于投掷小球)都无法区分自己是处于引力场还是加速参考系中。

这种概括成为了著名的爱因斯坦等效原理:在足够小的时空区域中物理定律约化成狭义相对论中的形式;而不可能通过局域的实验来探测到周围引力场的存在。

狭义相对论是建立于引力可以被忽略的前提,因此,对于引力可以被忽略的实际案例,这是一个合适的模型。如果考虑引力的存在并假设爱因斯坦等效原理成立,则可知宇宙间不存在全域的惯性系,而只存在跟随着自由落体的粒子一起运动的局域近似惯性系。

用时空弯曲的语言来说,在无引力作用的惯性系里的几条笔直类时世界线,在实际时空中会变得彼此相互弯曲,这意味着引力的引入会改变时空的几何结构。 所以无论是经典力学还是相对论,对于的惯性和惯性系的深入理解,是非常非常有必要的。现在的初中,高中生,应该对这一块知识反复琢磨。

所以关于惯性的本质一定是引力。引力的本源是时空。

且由于能量物质分布的不均匀,时空弯曲的情况是复杂的。这也是我不支持用时空弯曲来解释引力的原因。这一复杂情况,使得具体物体的引力无法想象。所以引力的本源是时空,而不是时空弯曲。引力是时空的性质。

而且爱氏的场方程从一开始就是四维时空,g_uv{\displaystyle g_{\mu \nu }\,}是从(3+1)维时空的度量张量。这是正确的理论,符合现在的天文观测。而一些理论物理学家,为了使得引力纳入到量子体系中,将场方程运用到更高维度的空间中。这我是不赞同,高度怀疑的。具体内容可见第三十四章《宇宙时空的哲学》。这样做的结果是把问题复杂化,更不利于大统一理论。数学游戏和实际天体物理不是一回事,高维度本身就不可想象。所以时空的弯曲,是在四维时空中进行的。

兴趣阅读:你就一下个丁肇中!

丁肇中,男,1936年1月27日生于美国密歇根州安阿伯城,祖籍是中国山东省日照市,实验物理学家。

1959年获美国密西根大学物理学学士和数学学士学位,1962年获得美国密歇根大学物理学博士学位,1965年发现反氘核;1967年测量电子半径,发现电子是没有体积的,半径小于10E-14厘米;1969年测量普通光和有质量的光(即矢量介子)之间的转变,证明高能量普通光可以变成矢量介子,同年任美国麻省理工学院物理系教授;1975年当选美国艺术和科学院院士;1974年发现第4种夸克的束缚态—J粒子,因此贡献,1975年被美国政府授予洛仑兹奖,1976年被授予诺贝尔物理奖。

1977年当选美国国家科学院院士;1979年发现胶子喷注;1989年确定三代中微子种类的数目只有三代;1994年起领导AMS实验在空间寻找反物质和暗物质,同年当选为中国科学院外籍院士。

1998年在太空中首次发现氦-4和同位素氦-3的空间分布是不同的; 2015年首次发现在太空中有大量高能正电子,这些正电子的来源很可能是暗物质碰撞所产生的。

他说:“任何科学研究,最重要的是要看对于自己所从事的工作有没有兴趣,换句话说,也就是有没有事业心,这不能有丝毫的强迫。许多人从事科学研究的时间并不长,而接连出成果,我认为很重要的原因是他们有事业心。”

摘自独立学者,科普作家,艺术家灵遁者书籍《变化》

你可能感兴趣的:(物理思考:爱因斯坦与他的弯曲时空)