VarTrix | Single-Cell Genotyping Tool

作者:ahworld
链接:vartrix | Single-Cell Genotyping Tool
来源:anno-sc.com
著作权归作者所有,任何形式的转载都请联系作者。

VarTrix是一款10XGenomics官方的软件用于从10XGenomics单细胞数据中提取单细胞变异信息。

  • VarTrix 并不执行variant calling
  • 需要输入先前定义的variant calls
  • VarTrix可用于评估样品中单细胞的异质性

VarTrix 流程图

image

github

https://github.com/10XGenomics/vartrix

下载安装

VarTrix使用rust语言编写,官方提供了编译后的二进制文件,直接下载就能使用。

image

我们以linux版为例,下载后增加可执行权限。

chmod +x vartrix_linux

测试

下载测试数据

为了快速理解VarTrix的使用,我们从github下载其测试数据
https://github.com/10XGenomics/vartrix/test

test目录里提供了多套测试数据,我们选下面这一组输入文件做测试:

  • test_dna.vcf
    单样品的VCF格式变异文件,用于输入
  • test_dna.bam,test_dna.bam.bai
    Input Cell Ranger BAM,需要有index文件
  • test_dna.fa, test_dna.fa.fai
    FASTA格式的参考基因组文件,需要有index文件
  • dna_barcodes.tsv
    Cell Ranger输出的矩阵barcode文件

使用说明

./vartrix_linux -h查看程序使用说明

vartrix 1.1.14
Ian Fiddes  and Patrick Marks 
Variant assignment for single cell genomics

USAGE:
    vartrix_linux [FLAGS] [OPTIONS] --bam  --cell-barcodes  --fasta  --vcf 

FLAGS:
    -h, --help                  Prints help information
        --no-duplicates         Do not consider duplicate alignments
        --primary-alignments    Use primary alignments only
        --umi                   Consider UMI information when populating coverage matrices?
    -V, --version               Prints version information

OPTIONS:
    -b, --bam                          Cellranger BAM file
        --bam-tag                   BAM tag to consider for marking cells? [default: CB]
    -c, --cell-barcodes                File with cell barcodes to be evaluated
    -f, --fasta                        Genome fasta file
        --log-level               Logging level [default: error]  [possible values: info, debug, error]
        --mapq                      Minimum read mapping quality to consider [default: 0]
    -o, --out-matrix            Output Matrix Market file (.mtx) [default: out_matrix.mtx]
        --out-variants          Output variant file. Reports ordered list of variants to help with loading into
                                             downstream tools
    -p, --padding                   Number of padding to use on both sides of the variant. Should be at least 1/2 of read
                                             length [default: 100]
        --ref-matrix            Location to write reference Matrix Market file. Only used if --scoring-method is
                                             coverage [default: ref_matrix.mtx]
    -s, --scoring-method     Type of matrix to produce. In 'consensus' mode, cells with both ref and alt reads are
                                             given a 3, alt only reads a 2, and ref only reads a 1. Suitable for clustering.  In
                                             'coverage' mode, it is required that you set --ref-matrix to store the second matrix
                                             in. The 'alt_frac' mode will report the fraction of alt reads, which is effectively the
                                             ratio of the alternate matrix to the sum of the alternate and coverage matrices.
                                             [default: consensus]  [possible values: consensus, coverage, alt_frac]
        --threads                   Number of parallel threads to use [default: 1]
        --valid-chars           Valid characters in an alternative haplotype. This prevents non sequence-resolved
                                             variants from being genotyped. [default: ATGCatgc]
    -v, --vcf                          Called variant file (VCF)

测试代码

./vartrix_linux -v ./test_dna.vcf -b ./test_dna.bam -f ./test_dna.fa -c ./dna_barcodes.tsv -o ./matrix.mtx

vartrix的输出文件格式与Cell Ranger类似,

  • 第1列:VCF中的SNP所在行号
  • 第2列:barcode在barcodes.tsv中的行号
  • 第3列:相应barcode(细胞)SNP鉴定结果

其中第3列的值只有0,1,2,3这四种,分别代表:

  • 0 : No Call
  • 1 : ref/ref
  • 2 : alt/alt
  • 3 : alt/ref
# head(./matrix.mtx)
%%MatrixMarket matrix coordinate real general
% written by sprs
46 1331 1073
1 8 1
1 73 1
1 154 2
1 174 1
1 191 2
1 194 2
1 243 1

UMAP图中展示VarTrix结果

要想在各细胞亚群UMAP图中展示VarTrix结果,我们需要先用seurat对细胞做常规分群分析,然后把VarTrix结果作为MetaData添加给Seurat对象。

VarTrix结果转为可添加给Seurat对象的MetaData

variants文件转为类似于geneID的格式,相当于给每个变异一个唯一的编号(以染色体及变异具体位置命名)

awk '{print $1,$2}' test_dna.vcf > SNV.loci.txt
sed -i 's/\s/:/g' SNV.loci.txt 

head SNV.loci.txt

#CHROM:POS
1:13116
1:13118
1:13656
1:15211
1:15274

读取VarTrix的结果matrix, barcodes和variants

library(Seurat)
library(Matrix)
library(stringr)

setwd("~/Documents/RD/Rs/VarTrix")
snv_matrix <- readMM("matrix.mtx")

# convert the matrix to a dataframe
snv_matrix <- as.data.frame(as.matrix(t(snv_matrix)))
#read in the cell barcodes output by Cell Ranger
barcodes <- read.table("dna_barcodes.tsv", header = F)

# read in SNV loci
# Should be constructed a single column. For example

# chr1:1234-1235
# chr2:2345-2346

# Construct the final table to add to the Seurat object
snps <- read.table("SNV.loci.txt", header = F)
colnames(snv_matrix) <- barcodes$V1
row.names(snv_matrix) <- snps$V1

snv_matrix_t <- as.data.frame(t(snv_matrix))

snv_matrix_t <- str_replace(as.character(snv_matrix_t), "0", "No Call")
snv_matrix_t <- str_replace(as.character(snv_matrix_t), "1", "ref/ref")
snv_matrix_t <- str_replace(as.character(snv_matrix_t), "2", "alt/alt")
snv_matrix_t <- str_replace(as.character(snv_matrix_t), "3", "alt/ref")

添加VarTrix信息给Seurat对象

Seurat.obj<-readRDS("/path/Step5_combinedObj.rds")
Seurat.obj <- AddMetaData(object = Seurat.obj, metadata = snv_matrix_t)

UMAP展示

UMAPPlot(object = Seurat.obj, group.by = "1:13116")

UMAP展示结果

因为VarTrix的github并未提供基因表达矩阵,所以VarTrix结果在UMAP中的展示我们暂用模拟数据代替

下面是模拟VarTrix结果添加给Seurat对象及可视化代码。

Seurat.obj<-readRDS("~/Desktop/blish_covid.seu.rds")
gts <- data.frame(snp_0001=rep(0, times=length(names(Seurat.obj$nFeature_RNA))),snp_0002=rep(1, times=length(names(Seurat.obj$nFeature_RNA))))
rownames(gts) <- names(Seurat.obj$nFeature_RNA)
gts[sample(rownames(gts),4000), "snp_0001"] <- 1
gts[sample(rownames(gts),5000), "snp_0001"] <- 2
gts[sample(rownames(gts),6000), "snp_0001"] <- 3

gts$snp_0001 <- str_replace(as.character(gts$snp_0001), "0", "No Call")
gts$snp_0001 <- str_replace(as.character(gts$snp_0001), "1", "ref/ref")
gts$snp_0001 <- str_replace(as.character(gts$snp_0001), "2", "alt/alt")
gts$snp_0001 <- str_replace(as.character(gts$snp_0001), "3", "alt/ref")

Seurat.obj <- AddMetaData(object = Seurat.obj, metadata = gts)

UMAPPlot(object = Seurat.obj, group.by = "snp_0001")
image

其中blish_covid.seu.rds来自下面这篇文章

Wilk A J, Rustagi A, Zhao N Q, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19[J]. Nature Medicine, 2020: 1-7.

2020是不平凡的一年,在年终来临之际,我们计划组织一次单细胞线上高级分析培训班,希望能够给您提供一点参考,我们将以上面这篇文章的数据为基础线索进行高级分析的代码重现,另外还有marker gene可视化应用代码的赠送。

你可能感兴趣的:(VarTrix | Single-Cell Genotyping Tool)