- 结构化提示词实践:提升大模型意图识别的精准度
有才不一定有德
chatgptAIGC
大家好!我是第一次写博客,可能会有一些不够专业或者细节上的错误,请大家多多指正!今天的主题是“结构化提示词”,我将结合我在学习LangGPT结构化提示词时的心得,分享一些如何编写清晰、准确的提示词的小技巧。这些技巧不仅帮助我提高了与大模型的互动效率,也使得任务的执行更加精准。希望这篇文章对大家有所帮助。为什么要使用结构化提示词?在与大模型的交互中,我们往往希望能够快速得到准确的回答。如果提示词不清
- 分布式架构中的事务管理:需要了解的常见解决方案
四七伵
Java面试宝典分布式架构后端分布式事务
前言在现代互联网应用中,分布式架构越来越常见。随着系统规模的扩大,越来越多的业务和数据被分布到不同的服务和数据库中。虽然分布式架构带来了诸多优势,但也引入了一个新的问题:分布式事务。一、什么是分布式事务?在单体应用中,事务管理通常比较简单,操作仅涉及单一数据库。只要保证ACID(原子性、一致性、隔离性、持久性)特性,数据的一致性和可靠性就能得到保证。但在分布式系统中,事务跨多个服务或数据库,这就带
- 一文读懂自动编码器:类型、原理与应用
人工智能
一文读懂自动编码器:类型、原理与应用近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目录自动编码器稀疏自动编码器K稀疏自动编码器收缩式自动编码器卷积自动编码器SequencetoSequence自动编码器降噪自动编码器变分自动编码器遮罩自动编码器自动编码器自动编码器是一种用于无监督学习和
- python dashboard django_Django + MySQL Dashboard 网页端数据库可视化
weixin_39639600
pythondashboarddjango
1.OverviewPython+MySQL+Django,有些数据托管在MySQL的数据库,然后我们希望进行可视化,通过web的方式对数据库的信息去进行展示/检索/维护/..这个项目中,我们的数据托管在MySQL的数据库中,然后在Django中配置数据库信息,连接到数据库,在前端用Django-table2进行渲染;最终我们可以在web端看到如下所示效果,可以进行展示所有的数据,然后进行检索和过
- MySQL 如何深度分页问题
My LQS
历史经验篇学习笔记篇mysql数据库
在实际的数据库应用场景中,我们常常会遇到需要进行分页查询的需求。对于少量数据的分页查询,MySQL可以轻松应对。然而,当我们需要进行深度分页(即从大量数据的中间位置开始获取少量数据)时,就会面临性能严重下降的问题。本文将深入探讨MySQL深度分页的问题,并介绍子查询和滚动ID这两种有效的解决方式。深度分页问题背景深度分页通常是指使用LIMITm,n语句进行查询,其中m是偏移量,n是要返回的记录数。
- Vue:前端体系、前后端分离
天宇阿
Vue前端vue.js
文章目录一、前端核心分析1、概述2、前端知识体系2.1、前端三要素2.2、结构层(HTML)2.3、表现层(CSS)2.4、行为层(JavaScript)2.5、三端统一2.6、后端技术2.7、主流前端框架3、了解前后分离的演变史3.1、后端为主的MVC时代3.2、基于AJAX带来的SPA时代3.3、前端为主的MV*时代3.4、NodeJS带来的全栈时代3.5、总结学习视频来自于:秦疆(遇见狂神说
- Spring Boot项目使用MyBatis Plus的详细步骤
wujiada001
Javaspringbootmybatis后端
在SpringBoot项目中使用MyBatisPlus,可以极大地简化数据库操作,提高开发效率。以下是在SpringBoot项目中集成和使用MyBatisPlus的详细步骤:一、环境准备确保已安装Java和SpringBoot:MyBatisPlus是基于Java和SpringBoot的,因此需要先安装好这两个环境。创建SpringBoot项目:可以使用SpringInitializr(https
- 无需标定板!Galibr:无需目标的LiDAR相机外参标定新方法
计算机视觉工坊
3D视觉从入门到精通数码相机自动驾驶
编辑:3DCV添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3D视觉最新模组、3DGS系列(视频+文档)、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!写在前面这篇文章
- Java数据库连接:手写代码实现MySQL或Oracle连接并操作数据
bug菌¹
Java实战(进阶版)java手动连接mysql手动连接数据库手动连接OracleOracleMySQL
作者:bug菌✏️博客:CSDN、掘金、infoQ、51CTO等简介:CSDN|阿里云|华为云|51CTO等社区博客专家,历届博客之星Top30,掘金年度人气作者Top40,51CTO年度博主Top12,掘金|InfoQ|51CTO等社区优质创作者,全网粉丝合计15w+;硬核微信公众号
- Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
weixin_30777913
音视频语言模型大数据人工智能
ApacheIceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。特别是在特征工程和模型训练方面,I
- SQL范式与反范式_优化数据库性能
随风九天
匠心数据库java数据库sql范式反范式
1.引言什么是SQL范式SQL范式是指数据库设计中的一系列规则和标准,旨在减少数据冗余、提高数据完整性和一致性。常见的范式包括第一范式(1NF)、第二范式(2NF)、第三范式(3NF)和BCNF(Boyce-Codd范式)。什么是SQL反范式SQL反范式是指在满足范式要求的基础上,有意引入数据冗余以提高查询性能。反范式通常用于读取密集型的应用场景,以减少查询时的连接操作,提高查询效率。为什么需要优
- springboot/ssm教学资源管理系统web在线课程教学视频Java代码编写
Java学长-kirito
javaspringbootspring
springboot/ssm教学资源管理系统web在线课程教学视频Java代码编写基于springboot(可改ssm)+vue项目开发语言:Java框架:springboot/可改ssm+vueJDK版本:JDK1.8(或11)服务器:tomcat数据库:mysql5.7(或8.0)数据库工具:Navicat/sqlyog开发软件:eclipse/idea依赖管理包:Maven代码+数据库保证完
- Spring Boot整合MyBatis-Plus以及实现分页
Demon_Hao
springbootmybatis
MyBatis-Plus是MyBatis的一个增强工具包,它在原有的MyBatis框架之上提供了更多便捷的功能和增强,有助于简化开发流程、提高开发效率。以下是MyBatis-Plus的一些主要特点和功能:CRUD操作增强:MyBatis-Plus提供了一套强大的CRUD方法,可以帮助开发者快速完成常见的数据库操作,无需编写繁琐的SQL语句,从而简化了数据访问的操作。条件构造器:MyBatis-Pl
- Oracle 分区在什么情况下使用?思维导图 代码示例(java 架构)
用心去追梦
oraclejava架构
Oracle分区的适用场景Oracle分区(Partitioning)是一种强大的数据管理工具,适用于特定类型的数据库工作负载和数据结构。以下是一些适合使用分区的情况:1.大型表优化超大数据量:当表包含数百万甚至数十亿行时,分区可以帮助提高查询性能。频繁更新:对于经常被插入、更新或删除的数据,分区可以减少锁定范围,提高并发性。2.数据仓库历史数据分析:在数据仓库中,通常会存储多年的历史数据。通过按
- Python 入门指南:如何在 MacOS 上轻松安装 Python
NicoleGus
pythonmacos开发语言
Python作为一门功能强大且易于学习的编程语言,已经成为许多开发者和数据科学家的首选工具。无论是初学者还是经验丰富的程序员,Python都能为他们提供强大的支持。如果你是一名MacOS用户,想要开始学习Python或者在Mac上进行开发,首先需要正确安装Python环境。本文将详细介绍如何在MacOS上安装Python,帮助你快速开始Python编程之旅。1.检查MacOS是否已预装Python
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 投票法:简单而强大的分类利器
ningaiiii
机器学习与深度学习分类机器学习人工智能
投票法:简单而强大的分类利器在机器学习的分类任务中,我们常常需要寻找高效且准确的方法来对数据进行分类。今天,让我们一起来探讨一种简单却极为强大的分类方法——投票法。一、投票法原理(一)通俗易懂的理解投票法就像一场班级选举。假设有一个班级要选出最受欢迎的水果,每个同学心中都有自己的选择(这就好比一个个分类器给出的分类结果)。最后统计每个水果获得的票数,得票最多的水果就当选(对应分类任务中,票数最多的
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- AtCoder备赛刷题 ABC 383 | 9 Divisors
热爱编程的通信人
算法
学习C++从娃娃抓起!记录下AtCoder(日本算法竞技网站)备赛学习过程中的题目,记录每一个瞬间。附上汇总贴:AtCoder备赛刷题|汇总【题目描述】FindthenumberofpositiveintegersnotgreaterthanNNNthathaveexactly999positivedivisors.找到不大于NNN且恰好有999个因数的正整数的数量。【输入】Theinputisg
- SaaS架构设计
frank3G
框架相关saas架构设计数据库应用服务器session扩展
对于SaaS应用的可伸缩,最理想的情况:随着用户数的增大,系统架构不用做调整,而仅需要增加/增强相应的硬件设备(应用服务器、数据库服务器)即可。而通常强调的应用架构具有可伸缩性,一般指的是可以实现”Scaleout”,即水平扩展或者向外扩展。而”Scaleup”通常为垂直扩展或者向上扩展,也就是增强硬件设备,这种方式几乎是任何应用架构普遍适用的,但是通常都会面临高成本的问题。1、应用服务器层的水平
- 线性回归基础学习
Remoa
人工智能线性回归优化gluonmxnetloss
线性回归基础学习目录:理论知识样例代码测试参考文献一、理论知识线性回归思维导图NDArray:MXNet中存储和变换数据的主要工具,提供GPU计算和自动求梯度等功能线性回归可以用神经网络图表示,也可以用矢量计算表示在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数在MXNet的init模块(initializer)提供了模型参数化的
- 【博学谷学习记录】超强总结,用心分享 | Hive分区表和分桶表
Onzswhite
hive大数据hadoop
#博学谷IT技术支持#一、分区表分区表就是对一个表的文件数据进行分类管理,表现形式就是有很多的文件夹(dt=2019-02-27)。分区表的作用是以后查询时,我们可以手动指定对应分区的数据,避免全表扫描,提高查询效率。所谓的分区表,指的就是将数据按照表中的某一个字段进行统一归类,并存储在表中的不同的位置,也就是说,一个分区就是一类,这一类的数据对应到hdfs存储上就是对应一个目录。当我们需要进行处
- 《SaaS架构设计》试读
DavyYew
11)SaaS与Cloudsaas架构设计云计算salesforce互联网数据库
SaaS基础架构—云计算今天的互联网业界对云计算的关注程度,已经不亚于对一次革命。微软、谷歌、Salesforce、Amazon等国外软件巨头纷纷推出了自己的云计算系统,意图领导这一轮的软件新浪潮。国内的阿里巴巴也已经投入大量资源进入云计算这片新的海洋。基于互联网的软件系统需要承担海量的数据、文件、数据库里的数据,等等。这就必然需要可扩充的、廉价的、可靠的和高性能的网络硬盘来提供图片、视频、博客等
- ArcGIS——数据库与服务备份(一、oracle中的geodatabase备份使用impdp与expdp)
gis_morningsun
GISArcGISJavaScript数据备份geodatabaseimpdpexpdparcgisoracle
一、引言谷歌百度文章已翻烂,自己想找的东西也找不到,硬是靠着自己偷懒的毅力来搞定了这个问题。一般文章建议空间数据库从arcmap中备份恢复,普通数据使用传统的oracle备份恢复,我认为都是存储在数据库中,应该有办法从oracle层面可以一起备份的,这就是这篇文章的起源。从此走向了一条不归路。二、oracle中geodatabase备份过程1、创建企业级geodatabase安装oracle客户端
- 笔记系列----逻辑备份和恢复 imp/exp/impdp/expdp
柠檬
oracle数据库sql
注:需要打开监听1.传统的导入导出exp/imp传统的导入导出程序是exp/imp,用于实施数据库的逻辑备份和恢复导出程序exp将数据库的对象定义和数据被分到一个二进制文件中导入程序imp将二进制中的对象定义和数据导入到数据库中导入导出程序特点:1)按时间保存2)允许导出指定表,并重新导入新的数据库中3)可以把数据库迁移到另外一台异构服务器上4)在2个不同版本的oracle之间的数据传输数据5)在
- 车载诊断数据库---ODX数据库解析
车载诊断技术
车载电子电气架构数据库人工智能AUTOSAR架构软件工程汽车
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节能减排。无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事.而不是让内心的烦躁、焦虑、毁掉你本就不多的热情和定力。时间不知不觉中,快
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- MyBatis学习:多表映射
Landy_Jay
mybatis学习数据库
目录一、多表映射概念1.1多表查询结果映射思路1.2实体类设计方案1.2.1对一关系设计1.2.2对多关系设计多表映射案例准备二、对一映射三、对多映射四、多表映射总结4.1多表映射优化4.2总结:一、多表映射概念1.1多表查询结果映射思路数据库的表结构具有复杂性,不是所有数据库都达到第三范式或BCNF范式,故数据库查询结果与java对象的属性映射也变得复杂。MyBatis使用ResultMap实现
- 可能是最深入全面的图解 Java Virtual Threads
jvmjvm虚拟机
本文尽我所能,用了数月时间,在学习了JavaVirtualTheads的一些设计和实现理念后,用我所能的精炼文字和画图,去记录我的所学。是我现在能找到的最深入全面的图解JavaVirtualThreads文章。本文摘自我在编写的开源互动图书《面向技术宅的JVM内幕》中的VirtualThreads一节。如图片不清,请转回原文。VirtualThreads按这本书作者的德性,和这本书的定位,这里不会
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不