谈到并发,我们不得不说AQS(AbstractQueuedSynchronizer)
,所谓的AQS
即是抽象的队列式的同步器,内部定义了很多锁相关的方法,我们熟知的ReentrantLock
、ReentrantReadWriteLock
、CountDownLatch
、Semaphore
等都是基于AQS
来实现的。
我们先看下AQS
相关的UML
图:
思维导图:
AQS
中 维护了一个volatile int state
(代表共享资源)和一个FIFO
线程等待队列(多线程争用资源被阻塞时会进入此队列)。
这里volatile
能够保证多线程下的可见性,当state=1
则代表当前对象锁已经被占有,其他线程来加锁时则会失败,加锁失败的线程会被放入一个FIFO
的等待队列中,比列会被UNSAFE.park()
操作挂起,等待其他获取锁的线程释放锁才能够被唤醒。
另外state
的操作都是通过CAS
来保证其并发修改的安全性。
具体原理我们可以用一张图来简单概括:
AQS
中提供了很多关于锁的实现方法,
getState():获取锁的标志 state 值
setState():设置锁的标志 state 值
tryAcquire(int):独占方式获取锁。尝试获取资源,成功则返回 true,失败则返回 false。
tryRelease(int):独占方式释放锁。尝试释放资源,成功则返回 true,失败则返回 false。
这里还有一些方法并没有列出来,接下来我们以ReentrantLock
作为突破点通过源码和画图的形式一步步了解AQS
内部实现原理。
文章准备模拟多线程竞争锁、释放锁的场景来进行分析AQS
源码:
三个线程(线程一、线程二、线程三)同时来加锁/释放锁
目录如下:
线程一加锁成功时AQS
内部实现
线程二/三加锁失败时AQS
中等待队列的数据模型
线程一释放锁及线程二获取锁实现原理
通过线程场景来讲解公平锁具体实现原理
通过线程场景来讲解 Condition 中 await()
和signal()
实现原理
这里会通过画图来分析每个线程加锁、释放锁后AQS
内部的数据结构和实现原理
如果同时有三个线程并发抢占锁,此时线程一抢占锁成功,线程二和线程三抢占锁失败,具体执行流程如下:
此时AQS
内部数据为:
线程二、线程三加锁失败:
有图可以看出,等待队列中的节点Node
是一个双向链表,这里SIGNAL
是Node
中waitStatus
属性,Node
中还有一个nextWaiter
属性,这个并未在图中画出来,这个到后面Condition
会具体讲解的。
具体看下抢占锁代码实现:
java.util.concurrent.locks.ReentrantLock .NonfairSync:
static final class NonfairSync extends Sync {
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
这里使用的ReentrantLock 非公平锁,线程进来直接利用CAS
尝试抢占锁,如果抢占成功state
值回被改为 1,且设置对象独占锁线程为当前线程。如下所示:
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
}
我们按照真实场景来分析,线程一抢占锁成功后,state
变为 1,线程二通过CAS
修改state
变量必然会失败。此时AQS
中FIFO
(First In First Out 先进先出)队列中数据如图所示:
我们将线程二执行的逻辑一步步拆解来看:
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire()
:
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
先看看tryAcquire()
的具体实现: java.util.concurrent.locks.ReentrantLock .nonfairTryAcquire()
:
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
nonfairTryAcquire()
方法中首先会获取state
的值,如果不为 0 则说明当前对象的锁已经被其他线程所占有,接着判断占有锁的线程是否为当前线程,如果是则累加state
值,这就是可重入锁的具体实现,累加state
值,释放锁的时候也要依次递减state
值。
如果state
为 0,则执行CAS
操作,尝试更新state
值为 1,如果更新成功则代表当前线程加锁成功。
以线程二为例,因为线程一已经将state
修改为 1,所以线程二通过CAS
修改state
的值不会成功。加锁失败。
线程二执行tryAcquire()
后会返回 false,接着执行addWaiter(Node.EXCLUSIVE)
逻辑,将自己加入到一个FIFO
等待队列中