- 展望 AIGC 前景:通义万相 2.1 与蓝耘智算平台共筑 AI 生产力高地
accurater
AIGC人工智能神经网络深度学习
喜欢可以到主页订阅专栏引言人工智能生成内容(AIGC)技术正在重塑内容创作、影视制作、广告设计等行业的底层逻辑。作为该领域的革命性技术代表,通义万相2.1凭借其开源特性、多模态生成能力和技术突破,成为全球视频生成模型的标杆。而蓝耘智算平台则通过高性能算力支持与分布式架构优化,为AIGC技术的规模化应用提供了基础设施保障。两者的协同不仅推动了AI生产力的跃迁,更开启了从技术研发到商业落地的全链条创新
- 批量安装 Python 库的脚本:提高python学习效率的第一步(附源码)
TAGRENLA
Interestingpythonprojectpython学习开发语言
批量安装Python库批量安装Python库的脚本:提高数据分析效率的一步(附源码)批量安装脚本前提条件使用pip:Python包管理工具批量安装脚本查看当前python解释器中安装的所有的库批量安装Python库的脚本:提高数据分析效率的一步(附源码)在现代数据分析领域,Python已成为一个不可或缺的工具。为了进行数据处理、分析、可视化和建模等任务,Python社区涌现出了众多强大的库和工具。
- 文心一言提前免费,高性能大模型全面入局该咋看?
江瀚视野
人工智能机器人
3月16日,百度正式发布文心大模型4.5及文心大模型X1,在文心一言官网即可免费使用。这件事我们该怎么看?首先,从技术创新的角度来看,百度文心大模型4.5和X1的发布展示了百度在AI大模型领域的显著进步。文心大模型4.5作为首个原生多模态大模型,在多模态理解、文本和逻辑推理能力上的显著提升,使其在多项测试中表现优于GPT4.5,这体现了百度在AI技术研发上的深厚积累。同时,文心大模型X1作为深度思
- DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?
facaixxx2024
AI大模型人工智能算法深度学习
deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b参数规模参数规模的区别,模
- python 使用microsoft-Florence-2-base进行图片描述生成
哦里 哦里哦里给
AI大语言模型实战pythonmicrosoft开发语言
目录一、Florence-2简介二、代码实践三、多语言模型一、Florence-2简介Florence-2是一个先进的视觉基础模型,采用基于提示(prompt)的方式,处理广泛的视觉和视觉-语言任务。Florence-2能够解析简单的文本提示,执行如图像描述、物体检测和分割等任务。该模型利用FLD-5B数据集,该数据集包含54亿个注释,涵盖1.26亿张图像,用于掌握多任务学习。模型的序列到序列架构
- docker compose的使用
LCY133
docker容器运维
以下是关于DockerCompose的详细使用指南和核心功能解析:一、DockerCompose核心价值DockerCompose是用于定义和编排多容器应用的工具,通过YAML文件实现以下功能:•一键启停:用单条命令管理多个关联容器•环境隔离:为每个服务创建独立运行环境•依赖管理:自动处理服务启动顺序•配置复用:标准化开发/测试/生产环境二、完整使用流程1.安装DockerCompose#Linu
- MDX语言的设备管理
穆骊瑶
包罗万象golang开发语言后端
设备管理中的MDX语言应用引言设备管理是在各行各业中都至关重要的一环,尤其是在制造业、物流业、以及信息技术等领域。设备的正常运行直接关系到企业的生产效率和经济效益。随着信息技术的不断发展,现代企业越来越依赖数据来优化设备管理。而MDX(MultidimensionalExpressions)语言作为多维数据库查询的标准语言,能够有效支持设备管理中的数据分析和决策支持。本文将深入探讨MDX语言在设备
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- 【人工智能】Model Context Protocol (MCP) 是一个开放协议,标准化了应用程序向大型语言模型(LLMs)提供上下文的方式
本本本添哥
013-AIGC人工智能大模型人工智能语言模型php
一、ModelContextProtocol(MCP)概述MCP,ModelContextProtocolMCP,是一个开放协议。MCP,标准化了应用程序向大型语言模型(LLMs)提供上下文的方式。MCP,旨在标准化应用程序如何为大型语言模型(LLM)提供上下文信息。MCP,提供了一个标准的接口,使得LLM可以无缝集成各种外部数据源和工具,从而扩展其能力和应用场景。二、MCP的定义和作用MCP定
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- A survey on instance segmentation: state of the art——论文笔记
栀子清茶
1024程序员节论文阅读计算机视觉人工智能笔记学习
摘要这篇论文综述了实例分割的研究进展,定义其为同时解决对象检测和语义分割的问题。论文讨论了实例分割的背景、面临的挑战、技术演变、常用数据集,并总结了相关领域的最新成果和未来研究方向。实例分割的发展从粗略的对象分类逐步演变为更精细的像素级别推理,广泛应用于自动驾驶、机器人等领域。论文为研究人员提供了对实例分割领域的全面了解和有价值的参考。一、简介第一部分“简介”主要介绍了实例分割的背景、定义和挑战。
- 金融时间序列分析(Yahoo Finance API实战)
闲人编程
Python数据分析实战精要金融yfinance时间序列波动率数据归一化数据分析Dash
这里写目录标题金融时间序列分析(YahooFinanceAPI实战)1.引言2.项目背景与意义3.数据集介绍4.GPU加速在数据处理中的应用5.交互式GUI设计与加速处理6.系统整体架构7.数学公式与指标计算8.完整代码实现9.代码自查与BUG排查10.总结与展望金融时间序列分析(YahooFinanceAPI实战)1.引言在当今金融市场中,时间序列数据分析是理解股票、指数以及其他金融产品走势的重
- 系分 02 软件工程
一越王超
软考系统分析师软件工程
软件工程本身涵盖内容很广,从系统规划到分析……到维护都属于软件工程,但是我们将会在其他章节讨论相关内容,本节我们主要内容如下:系统规划软件工程信息系统生命周期(★)软件开发模型(★★★★)逆向工程(★★)净室软件工程(★)需求工程系统设计系统测试与维护基础知识软件工程是指应用计算机科学、数学及管理科学等原理,以工程化的原则和方法来解决软件问题的工程,其目的是提高软件生产率、提高软件质量、减低软件成
- Python第二十三课:自监督学习 | 无标注数据的觉醒
程之编
Python全栈通关秘籍python开发语言人工智能机器学习
本节目标理解自监督学习的核心范式与优势掌握对比学习(ContrastiveLearning)框架实现图像掩码自编码器(MaskedAutoencoder)开发实战项目:亿级参数模型轻量化探索数据增强的创造性艺术一、自监督学习基础(AI的拼图游戏)1.核心思想解析学习范式数据需求生活比喻监督学习海量标注数据老师逐题批改作业无监督学习纯无标签数据自学杂乱笔记自监督学习自动生成伪标签玩拼图游戏(根据碎片
- 洛谷-P5534 【XR-3】等差数列
兔子递归
洛谷题解c++经验分享
题目:P5534【XR-3】等差数列题目分析:首先得输入,然后根据前两项的值算出“d”,即a[2]-a[1]。提示:十年OI一场空,不开longlong见祖宗接着求出前n项:从3开始,到n项结束。递推公式:"a[i]=a[i-1]+d;"。最后从1到n累加,输出。上代码:#includeusingnamespacestd;longa[1000005];intmain(void){longi,d,a
- 【从零开始学习计算机科学】软件工程(三)需求工程
贫苦游商
学习软件工程需求分析软件需求需求文档软件开发敏捷编程
【从零开始学习计算机科学】软件工程(三)需求工程需求工程好的需求应具备的特征:需求工程(RequirementEngineering,RE)起始导出需求讨论会头脑风暴调查问卷场景分析法实地考察原型法精化协商规格说明确认需求管理需求工程设计和开发一个计算机软件时,如果软件解决的问题不对,那么再精巧的软件也满足不了任何人的要求。理解问题的需求是软件工程师所面对的最困难的任务之一。困难的原因有二:客户不
- 【从零开始学习计算机科学】软件工程(五)软件设计
贫苦游商
学习软件工程软件开发软件设计敏捷开发极限编程软件需求
【从零开始学习计算机科学】软件工程(五)软件设计软件设计概述良好的设计具有三大特性设计主要包含的方面设计中的一些概念设计的方法与策略体系结构设计体系结构设计的基本问题:体系结构的设计模式体系结构设计的过程构建级设计面向对象构件设计用户接口设计用户接口设计原则:用户接口分析的目标:设计的评审软件设计概述软件的分析偏重于问题域,描述软件要做什么,而设计则偏重于解决方案,描述软件究竟要如何做。设计创建了
- 【从零开始学习计算机科学】软件工程(一)软件工程中的过程模型
贫苦游商
学习软件工程过程模型瀑布模型敏捷开发极限编程V模型
【从零开始学习计算机科学】软件工程(一)软件工程中的过程模型软件与软件工程软件工程具有以下核心要素软件工程中的过程模型惯用过程模型瀑布模型V模型增量过程模型演化过程模型原型模型螺旋模型协同开发模型喷泉模型专用过程模型构件组装模型统一过程模型(RUP)统一过程模型的起源与发展面向对象UMLRUP有9个工作流:敏捷模型敏捷开发的立场极限编程工业级极限编程(IXP)ScrumScrum中有三种角色:Sc
- 【从零开始学习计算机科学】软件工程(二)软件工程方法学
贫苦游商
学习软件工程hadoop面向过程面向对象软件开发敏捷开发
【从零开始学习计算机科学】软件工程(二)软件工程方法学软件工程方法学结构化/面向过程结构化编程结构化设计结构化分析结构化方法的常见问题面向对象软件工程方法学我们通常把在软件生命周期全过程中使用的一整套技术方法的集合称为方法学(methodology),也称为范型(paradigm)。软件工程中有许多方法:结构化/面向过程对于结构化方法,其又被称为传统方法学,也称为生命周期方法学或结构化范型。它采用
- 【从零开始学习计算机科学】设计模式(二)工厂模式、抽象工厂模式、单例模式、建造者模型、原型模式
贫苦游商
学习设计模式抽象工厂模式工厂模式单例模式原型模式建造者模式
【从零开始学习计算机科学】设计模式(二)工厂模式、抽象工厂模式、单例模式、建造者模型、原型模式工厂模式主要特点类型适用场景抽象工厂模式主要特点工作原理适用场景举例优点缺点总结单例模式主要特点工作原理适用场景优点缺点总结建造者模式主要特点工作原理适用场景优点缺点总结原型模式主要特点工作原理适用场景优点缺点总结工厂模式工厂模式(FactoryPattern)是一种常用的创建型设计模式,目的是通过工厂方
- 数据增强正在杀死你的模型:90%开发者不知道的回译质量陷阱
人工智能
1回译增强的核心机理1.1跨语言语义重构原理目前文本数据增强方面效果较好的增强方法。回译数据增强(Back-translationAugmentation)是基于神经机器翻译的文本再生技术,其核心运作流程包含三个关键阶段:语义编码阶段:源语言文本通过NMT模型编码为中间语义表示跨语言迁移阶段:语义表示解码为目标语言文本(建议选择阿尔巴尼亚语、斯瓦希里语等低资源语种)语义重构阶段:目标语言文本二次编
- 大模型系列——正式推出 Spring AI MCP:用于 MCP(模型上下文协议)的 Java SDK
不二人生
大模型人工智能大模型
大模型系列——正式推出SpringAIMCP:用于MCP(模型上下文协议)的JavaSDK我们很高兴推出SpringAIMCP,它是模型上下文协议(ModelContextProtocol,MCP)的强大JavaSDK实现。SpringAI生态系统的这一新成员为Java平台带来了标准化的AI模型集成能力。MCP是什么?模型上下文协议(MCP)是一种开放式协议,它规范了应用程序为大型语言模型(LLM
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- 在Python中如何检测和解决内存泄漏问题
python资深爱好者
pythonjvm
在Python中,内存泄漏通常不是像在一些低级语言(如C或C++)中那样常见,因为Python的内存管理(包括自动垃圾回收)相对高级且自动化。然而,在长时间运行的应用程序中,特别是在使用大量循环、大型数据结构或外部库时,仍然可能出现内存泄漏。以下是在Python中检测和解决内存泄漏的一些方法:1.使用内存分析工具a.objgraphobjgraph是一个用于分析Python对象图的库,可以帮助你识
- Python在数据处理中的应用:从入门到精通
程之编
python信息可视化开发语言
活动发起人@小虚竹想对你说:这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你参加为期14天的创作挑战赛!在当今数字化时代,数据处理已成为各个领域不可或缺的一部分。无论是企业决策、科学研究还是日常的个人数据分析,掌握高效的
- Web3.0 从入门到实战:一站式开发指南
七七知享
Webweb3html5javascript区块链网络安全安全web安全
在科技浪潮持续翻涌的当下,Web3.0作为互联网发展的全新篇章,正以前所未有的姿态重塑数字世界格局。从去中心化应用(DApps)蓬勃兴起,到区块链技术成为底层支撑架构,Web3.0开启了一个用户真正掌控数据、价值自由流通的崭新时代。对于怀揣探索精神的开发者而言,投身Web3.0领域,不仅意味着解锁全新技术栈,更能参与塑造互联网的未来形态。本文精心打造了一套从理论基石铺陈,到实战项目落地的Web3.
- MCP(Model Context Protocol)模型上下文协议 理论篇1 - 架构
AIQL
MCP(ModelContextProtocol)架构ai人工智能MCP
核心架构理解MCP如何连接客户端、服务器和LLM模型上下文协议(MCP)建立在灵活、可扩展的架构之上,能够实现LLM应用程序和集成之间的无缝通信。本文档涵盖了核心架构组件和概念。概述MCP采用客户端-服务器架构,其中:主机(Hosts)是发起连接的LLM应用程序(例如DesktopApp或IDE)。客户端(Clients)在主机应用程序内部与服务器保持1对1的连接。服务器(Servers)为客户端
- python 装饰器
每天减 1/5kg
python
装饰器装饰器本质上是一个返回函数的高阶函数,可以接收函数作为参数,并返回一个新的函数。它允许你在不修改原函数代码的情况下,动态地给函数或方法添加额外的功能在我们的日常使用中,装饰器一般用于:日志记录、权限认证、性能分析、缓存等场景。简单示例defmy_decorator(func):defwrapper(*args,**kwargs):print("Beforecallingthefunction
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- 京准电钟分享:水利系统NTP网络时间服务器应用
北京华人开创公司
时钟系统北斗卫星授时NTP时间同步网络服务器运维时间同步时钟同步NTP服务器网络时间服务器
京准电钟分享:水利系统NTP网络时间服务器应用京准电钟分享:水利系统NTP网络时间服务器应用1.项目背景水利控制系统涵盖水文监测、闸门控制、泵站调度、数据采集与传输等多个子系统,设备分布广泛且需协同工作。系统内各设备(如PLC、RTU、SCADA服务器、传感器等)的时间一致性直接影响数据记录的准确性、事件报警的时序性以及故障分析的可靠性。为实现全系统高精度时间同步,需部署NTP(NetworkTi
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那