Win10系统安装Tensorflow-GPU和VSCode构建Tensorflow开发环境

【前言】
1. 最近因为上课需要安装Anaconda和Tensorflow-GPU,Anaconda安装很容易,但Tensorflow-GPU版本的安装较为复杂,因为需要考虑版本匹配的一些问题,很容易出现问题。我花了两天多的时间终于安装成功,属实不易,下面分享一下我的安装过程
2. 安装环境
操作系统:64位Win10
GPU:MX130
IDE:VS Code
其他:CUDA10.0、cuDNN7.6.5


【安装过程】
1.安装Anaconda
版本:2019.03
百度网盘下载链接 提取码:ymt0
安装较为简单,这里只放几张较为重要的图片

1.png

2.png
3.png

2.安装CUDA10.0
CUDA是基于C语言的,可以让代码直接在GPU中运行的控制语言,所以第一步需要安装CUDA10.0,内含NVIDIA驱动程序(自定义安装时可以选择是否安装驱动)。
2.1 CUDA官方说明(感兴趣可以看一下)
下载地址:点这里
百度网盘下载链接 提取码:0jh2

4.png

选择适合自己电脑的版本下载,exe是可执行文件。

2.2安装CUDA
几个文件下载好之后挨个点击进行安装即可,会先检查系统兼容性,然后选择安装方式。程序默认的精简模式应该可以理解为安装所有东西,其中包括了我暂时不用的VS编译器和显卡驱动,所以我选择的是自定义模式。

5.png
6.png

接下来是选择安装路径。在其他同学的安装过程中发现更改安装路径容易出现一些问题,所以我就直接按照默认路径进行安装的,这样也便于下面配置环境变量,一路Next 直到完成即可。

7.png

2.3配置环境变量
安装成功后在系统的环境变量中会自动添加两个变量,如图:

8.png

但是这还不够,我们还需要再添加几个系统变量(根据实际安装版本和路径添加,一样版本和默认路径的可直接复制粘贴):


9.png

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0
 
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64 
 
CUDA_BIN_PATH = %CUDA_PATH%\bin 
 
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64 
 
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

接着,在系统变量Path里添加变量,双击Path添加如下变量(同样根据实际路径填):

10.png
%CUDA_LIB_PATH%
 
%CUDA_BIN_PATH%
 
%CUDA_SDK_LIB_PATH%
 
%CUDA_SDK_BIN_PATH%
 
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
 
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin 
 
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\common\lib\x64
 
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.0\bin\win64

2.4检验是否安装成功
打开cmd命令窗口,切换路径(注意根据实际路径)

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\demo_suite

分别运行以下命令

bandwidthTest.exe
deviceQuery.exe

若分别显示Result = PASS,则安装成功,如图:


11.png

3.安装cuDNN
cuDNN是CUDA的库,易于写代码。官网下载需要先注册英伟达账号。
3.1下载
官网下载地址:点这里
注意和前面的表格里的版本要求相匹配,这里我下载的是7.6.5,如图:

12.png

百度网盘下载链接 提取码:g5y8

3.2解压下载好的软件
解压后进入文件夹,按照下面的要求将文件放到相应的位置:
将解压后文件夹中include、lib/x64和bin文件夹中的.h .lib 和.dll 后缀的文件分别拷贝到cuda对应路径下的include, lib/x64, bin 文件夹下。

到这里就安装好了CUDA10.0及其对应的cuDNN文件,艰难的路程已经基本走完。

4.安装Tensorflow-gpu
4.1创建环境
打开Anaconda Prompt

13.png

先在命令行使用以下命令查看conda版本

conda --version

如果显示的版本是4.6.11,建议使用以下命令更新conda

conda update conda

接着,在命令窗口输入以下命令创建环境:

conda create -n tf-gpu python=3.7.3

然后激活刚创建的环境

activate tf-gpu

4.2安装
查看可下载版本

conda search tensorflow-gpu

结果如图:


14.png

然后选择自己想要安装的版本,这里以2.1.0为例

conda install tensorflow-gpu=2.1.0

4.3测试安装是否成功
打开命令提示符输入python
然后输入以下命令,一行一行的输入

import tensoflow as tf
tf.__version__

如果没有报错,说明安装成功

5.将Tensorflow-gpu环境导入到VS Code中
5.1安装VS Code的Python插件

15.png

5.2添加路径
通过Anaconda安装tensorflow时,一般会新建一个虚拟环境(env),但是vscode在调试python代码时默认使用的是base环境下的路径,这就会出现无法解析tensorflow的情况。所以需要将tensorflow环境的路径添加到vscode的settings.json用户设置中,即可在vscode中搭建TensorFlow的开发环境。

注:tf-gpu为新建环境名,可能会有所不同,需要修改

打开settings.json文件步骤
打开 VSCode 编辑器后,点击左下角“设置”按钮。

16.png

打开命令面板,在弹出的选择框中,选择“Command Palette”
也可以使用快捷键“Ctrl + Shift + P”打开命令面板


17.png

在选择框的下拉列表中选择“Preferences: Open Settings (JSON)”
如果没有的话,可以在输入框中输入“settings”,这时就可以看到了


18.png
19.png
 // tensorflow 配置
"python.pythonPath":"D:\\Anaconda3\\envs\\tf-gpu\\python.exe",
"python.autoComplete.extraPaths": [
    "D:\\Anaconda3\\envs\\tf-gpu",
    "D:\\Anaconda3\\envs\\tf-gpu\\Lib\\site-packages"
],
"python.autoComplete.addBrackets": true,

注:以上路径根据自身安装路径进行配置

5.3安装keras

20.png

21.png

到此就大功告成了!!!

你可能感兴趣的:(Win10系统安装Tensorflow-GPU和VSCode构建Tensorflow开发环境)