- Jetson平台编译Tengine
space01
AIoTJetson人工智能深度学习计算机视觉
1.Tengine简介Tengine于2017年在GitHub(https://github.com/OAID/Tengine)开源,是OPENAILAB(开放智能)推出的自主知识产权的边缘AI计算框架,致力于解决AIoT产业链碎片化问题,加速AI产业化落地。Tengine兼容多种操作系统和深度学习算法框架,简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地,可以十倍提升
- 函数对象
tal0n
函数对象是STL库提供的除了迭代器,迭代器配接器以外的另外一种概念。简单来说:函数对象提供了一种方法,将要调用的函数与准备传递给这个函数的隐藏参数捆绑在一起。即:该对象实现了operator()的同时还提供了部分执行时的上下文环境。下面我们通过例子来详细看下函数对象。例子STL中有一个find_if的算法实现,他的参数包括:一组表示范围的迭代器,一个用于生成bool类型值的判断式。例如我们需要在一
- 深度学习篇---矩阵
Atticus-Orion
嵌入式知识篇上位机知识篇嵌入式硬件篇深度学习矩阵人工智能
在机械臂解算、深度学习网络等硬件和软件领域中,矩阵运算作为核心数学工具,承担着数据表示、变换、映射和优化的关键作用。以下从具体领域出发,详细总结涉及的矩阵运算及对应的核心知识:一、机械臂解算领域机械臂解算(运动学、动力学分析)的核心是描述“关节空间”与“操作空间”的映射关系,矩阵运算用于精准刻画坐标系转换、运动传递和力/力矩分析。1.运动学解算(正/逆运动学)核心目标:通过矩阵描述关节角度与末端执
- 飞算JavaAI:力臻开发之本真,破 AI 代码之繁琐,传统项目一键生成
微学AI
人工智能javajavaAI
飞算JavaAI:力臻开发之本真,破AI代码之繁琐,传统项目一键生成文章目录飞算JavaAI:力臻开发之本真,破AI代码之繁琐,传统项目一键生成一、前言二、飞算JavaAI是什么?2.1背景与实力2.2飞算JavaAI的“独门绝技”三、飞算JavaAI实战体验3.1IDEA插件安装配置3.2Main中写一个简单的梯度下降算法3.3main函数搭建一个卷积神经网络网络3.4飞算JavaAI:需求分析
- 读《宝葫芦的秘密》有感
b06daf62de2e
暑期,我读了好几本书,但让我念念不忘的是《宝葫芦的秘密》。主要内容讲的是王葆有一个梦想,就是想要一个宝葫芦。不过让人令想不到的是王葆既然是在钓鱼的时候,钓到了一个宝葫芦,这可真奇怪了。不过有了宝葫芦之后他可幸福了,真的是想要什么就会出来什么,而且宝葫芦最大的一个功能就是它还能知道王葆里想的什么。不过这已经不重要了,最重要的是王葆只要说我想要一个大西瓜、一个香蕉、一包薯片,这些东西就搜的一下出现在哪
- XC7A75T‑2FGG484I Xilinx Artix‑7 FPGA AMD
XC7A75T‑2FGG484I属于Xilinx28 nmArtix‑7FPGA内部包含约75,000个查找表(LUT)及相应触发器,对应数十万级组合逻辑和状态存储;它还集成了4.9 Mb的分布式BlockRAM,满足高速缓存与FIFO需求;240个DSP48E1乘加单元为数字信号处理、滤波器及乘法累加运算提供硬件加速。超网格(super‑net)布局与高效的路由交换矩阵,确保了内部时钟域频率可达
- 短剧小程序的「技术革命」:从「粗放生长」到「精准运营」
weixin_lynhgworld
小程序
随着短剧行业进入「存量竞争」阶段,技术能力正成为小程序的核心竞争力。从内容推荐到用户留存,从广告变现到IP开发,每一环节都需要数据驱动和算法优化。一、智能推荐:让「用户找到剧」变成「剧找到用户」传统短剧平台依赖标签匹配,而小程序通过多维度数据实现精准推荐:「情绪图谱」分析:记录用户观看时的快进、暂停、重复播放等行为,构建情绪波动曲线;「场景化推荐」:根据时间(如深夜)、地点(如地铁)、设备(如手机
- 深入理解Mysql索引底层数据结构与算法
桑翔
一.索引的本质索引是帮助MySQL高效获取数据的排好序的数据结构二.索引数据结构1.二叉树2.红黑树3.Hash表4.B-Tree1.叶节点具有相同的深度,叶节点的指针为空2.所有索引元素不重复3.节点中的数据索引从左到右递增排序B-Tree5.B+Tree1.非叶子节点不存储data,可以放更多的索引2.叶子节点包含所有索引字段3.叶子节点用指针连接,提高区间访问的性能(体现在做范围查询的时候)
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- 使用 Python 爬取网易云音乐歌单数据(完整教程)
Python爬虫项目
python开发语言githubselenium爬虫
一、引言随着在线音乐平台的普及,网易云音乐(NetEaseCloudMusic)凭借其个性化的推荐算法和丰富的用户互动,吸引了大量用户。网易云音乐的歌单中包含了丰富的音乐数据,包括歌曲名、歌手、专辑、播放量、评论数等信息。通过爬取这些数据,可以对音乐流行趋势进行分析,挖掘音乐推荐策略,甚至训练个性化推荐模型。本教程将使用Python构建一个爬虫,解析网易云音乐的歌单接口,获取歌曲数据并进行数据分析
- c#集合排序
zls365365
c#windows开发语言
在C#中,集合排序是一种常见的操作,它可以帮助我们对集合中的元素进行排序。C#中提供了多种集合排序方法,包括Array.Sort、List.Sort、SortedList和SortedSet等。下面分别介绍一下这些集合排序方法的用法和注意事项:1.Array.SortArray.Sort是C#中的数组排序方法,可以对数组中的元素进行排序。Array.Sort方法可以使用默认的排序算法或者自定义的排
- C# 代码(`Hashtable` 和 `SortedList`)
张謹礧
c#哈希算法开发语言
一、Hashtable(哈希表)1.基本概念非泛型集合:存储键值对(object类型),通过哈希算法实现快速查找。线程安全:默认非线程安全,可通过Hashtable.Synchronized创建线程安全版本。键的唯一性:键必须唯一,且不可为null(值可为null)。2.创建与初始化//创建空的HashtableHashtablehashtable=newHashtable();//创建并初始化
- 人脸检测算法——SCRFD
海绵波波107
#计算机视觉算法计算机视觉
SCRFD算法核心解析1.算法定义与背景SCRFD(SampleandComputationRedistributionforEfficientFaceDetection)由JiaGuo等人于2021年在arXiv提出,是一种高效、高精度的人脸检测算法,其核心创新在于:双重重分配策略:样本重分配(SR):动态增强关键训练阶段的样本数据。计算重分配(CR):通过神经架构搜索(NAS)优化骨干网络(B
- 力扣经典算法篇-28-无重复字符的最长子串(左右指针 + Hash统计)
weisian151
算法-力扣经典篇算法leetcode哈希算法
1、题干给定一个字符串s,请你找出其中不含有重复字符的最长子串的长度。示例1:输入:s=“abcabcbb”输出:3解释:因为无重复字符的最长子串是“abc”,所以其长度为3。示例2:输入:s=“bbbbb”输出:1解释:因为无重复字符的最长子串是“b”,所以其长度为1。示例3:输入:s=“pwwkew”输出:3解释:因为无重复字符的最长子串是“wke”,所以其长度为3。请注意,你的答案必须是子串
- 【leetcode-字符串】单词搜索 II
程序员小2
【leetcode-字符串】单词搜索II题目:给定一个二维网格board和一个字典中的单词列表words,找出所有同时在二维网格和字典中出现的单词。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。示例:输入:words=["oath","pea","eat","rain"]andboard=[
- 耿向顺:别向往什么全民素质教育,高考才是寒门学子的最佳出路
耿向顺1
这是“耿向顺”账号矩阵开通以来的第183篇原创文章,关于农村素质教育。1我在我的微博后台,收到这样一个私信,让我内心一震,感慨万千:“耿老师您好,我是一名高二学生,我看了您写的那篇关于农村教育的文章,觉得非常能触动我。我和您一样,也是来自农村的,从小父母就外出打工,他们唯一告诉我的事情就是要好好学习,可我我学习成绩不好,每天感觉自己浑浑噩噩的,提不起学习兴趣,语文数学学了有什么用?我讨厌考试,我恨
- 73. 矩阵置零
youzhihua
题目描述给定一个mxn的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。示例:输入:[[1,1,1],[1,0,1],[1,1,1]]输出:[[1,0,1],[0,0,0],[1,0,1]]暴力求解思路1.遍历数组中的每个元素,若这个元素等于0,则分别使用两个Set记录下这个元素的横坐标和纵坐标。2.遍历两个Set,将其中的行和列的值都置成0。3.由于题目要求的是原地法
- lanqiaoOJ 2145:求阶乘 ← 二分法
hnjzsyjyj
信息学竞赛#分治算法与双指针算法二分法
【题目来源】https://www.lanqiao.cn/problems/2145/learning/【题目描述】满足N!的末尾恰好有K个0的最小的N是多少?如果这样的N不存在输出-1。【输入格式】一个整数K。【输出格式】一个整数代表答案。【输入样例】2【输出样例】10【评测用例规模与约定】对于30%的数据,1≤K≤10^6.对于100%的数据,1≤K≤10^18.【算法分析】●二分法的应用条件
- 0315_算法22级1班实验2(递归分治策略)
目录ProblemA众数问题题目描述输入输出样例输入样例输出思路分析代码实现思路优化ProblemB半数集问题题目描述输入输出样例输入样例输出思路分析代码实现ProblemC查找数组拐点题目描述输入输出样例输入样例输出思路分析代码实现思路优化ProblemA众数问题题目描述所谓众数,就是对于给定的含有N个元素的多重集合,每个元素在S中出现次数最多的成为该元素的重数,多重集合S重的重数最大的元素成为
- 0301_算法22级1班实验1
目录ProblemA统计数字问题1.题目描述2.思路分析3.代码实现ProblemB字典序问题1.题目描述2.思路分析3.代码实现ProblemC最多约数问题1.题目描述2.思路分析3.代码实现ProblemA统计数字问题1.题目描述题目描述问题描述:一本书的页码从自然数1开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6页用数字6表示,而不是06或0
- 掘金海外二手市场:跨境卖家如何用多账号在Depop突围
爱跨境的小贸米
跨境知识点大数据二手市场
随着环保意识觉醒和Z世代消费趋势的转变,海外二手电商平台如Depop正快速崛起。这个以“潮流+二手”为标签的社交电商平台,吸引了大批追求独特风格的年轻买家。对于中国跨境卖家来说,Depop不仅是一个出口二手或尾货的绝佳渠道,更是切入欧美年轻人市场的窗口。然而,Depop对于违规操作的风控机制日益严格,多账号操作若处理不当,轻则账号被限流,重则直接封号。于是,“多账号矩阵式运营”成为越来越多卖家的突
- OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理opencv算法ORB算法SIFT算法SURF算法AKAZE算法计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 脱岗离岗逃岗监测识别软件系统平台 标检测算法#YOLO
值班脱岗智能监测识别系统是一种利用AI视频智能分析技术的智能化系统,能够对办公工作岗位区域、岗亭、值班室、生产线岗位等进行7*24小时不间断实时监测。该系统的出现,有助于提高工作效率,确保工作秩序的正常运行,同时也能有效避免值班人员脱岗、懈怠等现象的发生。该系统的工作原理是通过高清摄像头捕捉实时画面,然后利用AI视频智能分析技术对画面进行实时分析,识别出是否有人脱岗、懈怠或者有其他异常情况发生。当
- Matlab 数字图像 第二章 矩阵及其运算
肌肉猛1大序子
matlab矩阵开发语言图像处理
目录2.1矩阵的创建2.1.1直接输入:2.1.2载入外部数据文件2.1.3利用内置函数创建2.2矩阵的寻访2.2.1下标元素访问2.2.2访问单元素2.3矩阵的拼接2.3.1矩阵拼接符[]2.3.2函数2.4矩阵的运算2.4.1加减2.4.2乘除2.4.3乘方2.4.4按位运算2.4.5行列式与秩2.4.6逆与迹2.4.7矩阵的范数(?)2.4.8特征值和特征向量PS纯纯用来记笔记,要是有错随时
- 颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3人工智能量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
- 智界R7智驾功能和性能评价
TheWanderers
智能驾驶智界
一、智驾行车能力标题硬件配置与系统架构感知硬件:Max/Ultra版搭载1个192线激光雷达、3个毫米波雷达(含1个4D成像雷达)、12个超声波雷达、11个高清摄像头(含前向800万像素双目+鱼眼镜头)。Pro版未配备激光雷达,但保留3个毫米波雷达和10个摄像头。核心算法:HUAWEIADS3.0系统,基于端到端架构,整合感知、决策与控制模块,支持全场景目标识别(如非标准障碍物、夜间行人)。算力支
- 【力扣】第42题:接雨水
jstart千语
力扣算法leetcode算法职场和发展
原文链接:42.接雨水-力扣(LeetCode)1、题目解析解读:给定一个数组,使数组的值为高形成柱子,按照短板效应原理能剩多少水。核心思想:每一个坐标位置可以承装的水=min(左边最高柱子,右边最高柱子)-该坐标值2、编码实现方法一我们可以用两个数组,一个用来记录每一个坐标值的左边中柱子的最高值,一个用来记录每一个坐标值右边中柱子的最高值。当我们要记录某一个坐标值能盛装多少水时,根据上面提供的公
- 数字图像处理(三:图像如果当作矩阵,那加减乘除处理了矩阵,那图像咋变):从LED冬奥会、奥运会及春晚等等大屏,到手机小屏,快来挖一挖里面都有什么
数字图像处理(三)一、(准备工作:咋玩,用什么玩具)图像以矩阵形式存储,那矩阵一变、图像立刻跟着变?1.Python+JupyterNotebook/Lab+库(NumPy,OpenCV,Matplotlib,scikit-image)2.MATLAB+ImageProcessingToolbox3.JavaScript+HTML5Canvas+浏览器4.专业的图像处理软件(带脚本/插件功能)二、
- 人工智能视频分析系统人员离岗报警设计方案
liuhu21
人工智能云计算运维
一、方案概述近几年安防监控技术不断的进步,特别是在人工智能推出之后。安防监控系统结合人工智能算法做到了许多以前无法做到的事情。就比如我们今天要说的离岗检测报警监控系统。以前我们只能通过人工值守监控室的方式,通过人的判断去观看现场人员在岗情况。如今有了离岗检测监控系统,系统可以自动监测现场人员是否在岗、离岗时间以及离岗人数等等。这样,大大减少了监控室值班人员的工作量,同时相较人工监管提升了工作效率。
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分