(已解决 7.8号)leecode 分词利用词典分词 word break

不戚戚于贫贱,不汲汲于富贵      ---五柳先生

 

Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

For example, given
s = "leetcode",
dict = ["leet", "code"].

Return true because "leetcode" can be segmented as "leet code".

搜索--》自顶向下的动态规划(备忘录法)》自底向下动态规划

这些思想一直在使用中,今天是7.8号,看了搜索的书籍,期中讲的是利用字典分词,所以觉得这个题目值得一做。今天用了3个多小时ac了,其实我把动态规划方程搞错了。

 

dp[i][j] 表示 以 j开始长度为 i的字符串是否符合条件,这个事最核心的,

举个例子:  “abc”  

第一层循环判断    a      b      c   是否则集合中,

第二层              ab    bc   是否在集合中

第三层    abc  是否符合条件

每一层只要利用上面一层的信息,比如 判断 abc,只要判断 (abc)   ,   (a&&bc) ,(ab&&c)  三个是否满足条件 

 

1.递归(搜索)

学习递归时候,老师说他的好处 是简单,其实递归的思路是暴力搜索的方法,所以写的人需要考虑的问题很少,但是栈的调用很耗时,同时可能会出现栈溢出。但是他只做自己需要干的事情,,同时他需要干的事情他会重复做。这为后面的自顶向下的优化做了铺垫。

public class Solution {

    public boolean wordBreak(String s, Set<String> dict) {

        

        if(s=="") return true;

        for(int i=0;i<s.length();i++)

        {

            String s1=s.substring(0,i+1); //枚举所有以0为开头的的字符串

            if(dict.contains(s1)&&wordBreak(s.substring(i+1),dict))

            {

                return true;

                

            }

            

            

        }

        

        return false;

        

        

    }

}

结果是:  

Last executed input:"acaaaaabbbdbcccdcdaadcdccacbcccabbbbcdaaaaaadb", ["abbcbda","cbdaaa","b","dadaaad","dccbbbc","dccadd","ccbdbc","bbca","bacbcdd","a","bacb","cbc","adc","c","cbdbcad","cdbab","db","abbcdbd","bcb","bbdab","aa","bcadb","bacbcb","ca","dbdabdb","ccd","acbb","bdc","acbccd","d","cccdcda","dcbd","cbccacd","ac","cca","aaddc","dccac","ccdc","bbbbcda","ba","adbcadb","dca","abd","bdbb","ddadbad","badb","ab","aaaaa","acba","abbb"]

 2.超时了,如何优化呢,博主在一本书上看过,是自顶向下动态规划,同学们可以查查,其实就是记住了他重复做的事情。

dp[i][j]表示两者之间是否在词典中。

dp[i][j]=dp[i][k] && dp[k+1][j] (i+1=<k<j-1)

public class Solution {

    

  

    // 

    int dp(int i,int j,String s,Set<String> dict,int d[][]) // get the i to j is exit in the dict

    {

        if(d[i][j]==1) return 1;

        if(d[i][j]==-1) return -1;

        if(dict.contains(s.substring(i,j+1)))

        {

            d[i][j]=1;

            return 1;

            

        }

        else

        {

            for(int k=i;k<j;k++)

            {

                if(dp(i,k,s,dict,d)==1&&dp(k+1,j,s,dict,d)==1)

                {

                    d[i][j]=1;

                    return 1;

                    

                    

                }

                

                

            }

            

            return -1;

            

        }

        

        

    }

    public boolean wordBreak(String s, Set<String> dict) {

        int len=s.length();

        

        int d[][]=new int[len][len];

        int ans=dp(0,len-1,s,dict,d);

        if(ans==1) return true;

         return false;

       

        

        

        

        

    }

}


错了,还是超时,

3.最后的自定向下方法了,填表,那些专业人士都叫打表。(AC)

 

 1 public class Solution {

 2     public boolean wordBreak(String s, Set<String> dict) {

 3         if(s=="") return true;

 4         int len=s.length();

 5        boolean dp[][]=new boolean[len][len];

 6        

 7         //

 8         for(int i=0;i<len;i++)

 9         {

10             for(int j=0;j<len-i;j++)

11             {

12                 

13                 

14                 String s2=s.substring(j,j+i+1);

15                 if(dict.contains(s2))

16                 {

17                     dp[i][j]=true;

18                     continue;

19                     

20                 }

21                

22                     for(int k=j+1;k<=j+i+1;k++)

23                     {

24                         

25                         if(dp[k-j-1][j]&&dp[j+i-k][k])

26                         {

27                             dp[i][j]=true;

28                             break;

29                         }

30                     }

31                     

32                     

33                

34                 

35                 

36                 

37                 

38             }

39         }

40             

41             

42   

43         return dp[len-1][0];

44         

45         

46         

47     }

48 }

 下面解决把分词结果输出来

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(break)