程序在容器中、容器在Pod中,可以通过pod的ip来访问应用程序,但是podIP会随着创建销毁而改变。由此,Service出现:
Service会对提供同一个服务的多个pod进行聚合
,并且提供一个统一的入口地址。通过访问Service的入口地址就能访问到后面的pod服务。
在整个Service的生命周期中,ServiceIP是不会变化的。
Service是一个概念,真正起作用的是kube-proxy服务进程:
每个Node节点上都运行着一个kube-proxy服务进程。当创建Service的时候会通过api-server向etcd写入创建的service的信息,而kube-proxy会基于监听的机制发现这种Service的变动,然后它会将最新的Service信息转换成对应的访问规则。
[root@node1 ~] ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.97.97.97:80 rr
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
2、kube-proxy的三种工作模式
userspace 模式
userspace模式下,kube-proxy会为每一个Service创建一个监听端口,发向Cluster IP的请求被Iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的Pod并和其建立链接,以将请求转发到Pod上。 该模式下,kube-proxy充当了一个四层负责均衡器的角色。由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。
iptables 模式
iptables模式下,kube-proxy为service后端的每个Pod创建对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod IP。 该模式下kube-proxy不承担四层负责均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端Pod不可用时也无法进行重试(转发到了podA,podA不可用也不会去试其他pod)
ipvs 模式
ipvs模式和iptables类似,kube-proxy监控Pod的变化并创建相应的ipvs规则。ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。
此模式必须安装ipvs内核模块,否则会降级为iptables
# 开启ipvs
[root@k8s-master01 ~] kubectl edit cm kube-proxy -n kube-system
# 修改mode: "ipvs"
按标签删除kube-proxy的pod:
# 按标签删除kube-proxy的pod,使刚改的配置生效
[root@k8s-master01 ~] kubectl delete pod -l k8s-app=kube-proxy -n kube-system
[root@node1 ~] ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.97.97.97:80 rr
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
Service的资源清单文件:
kind: Service # 资源类型
apiVersion: v1 # 资源版本
metadata: # 元数据
name: service # 资源名称
namespace: dev # 命名空间
spec: # 描述
selector: # 标签选择器,用于确定当前service代理哪些pod
app: nginx
type: # Service类型,指定service的访问方式
clusterIP: # 虚拟服务的ip地址
sessionAffinity: # session亲和性,即将客户端的同一个IP的访问转发到同一个podshang .支持ClientIP、None两个选项
ports: # 端口信息
- protocol: TCP
port: 3017 # service端口
targetPort: 5003 # pod端口
nodePort: 31122 # 主机端口
关于type字段,service有四种类型:
ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问(除了集群里的主从节点机器,其他机器即使网络和集群机器相通也不能访问)
NodePort:将Service通过集群某节点Node上指定的端口暴露给外部,如此,集群外部的机器就可以访问服务
LoadBalancer:使用外接负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持
ExternalName: 把集群外部的服务引入集群内部,直接使用
准备实验数据,结构如下,通过改变Service的类型查看效果:
利用Deployment创建出3个pod,pod设置app=nginx-pod的标签:
# deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: pc-deployment
namespace: dev
spec:
replicas: 3
selector:
matchLabels:
app: nginx-pod
template:
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- containerPort: 80
[root@k8s-master01 ~] kubectl create -f deployment.yaml
deployment.apps/pc-deployment created
查看pod详情,加 -o wide和 --show-labels
[root@k8s-master01 ~] kubectl get pods -n dev -o wide --show-labels
NAME READY STATUS IP NODE LABELS
pc-deployment-66cb59b984-8p84h 1/1 Running 10.244.1.39 node1 app=nginx-pod
pc-deployment-66cb59b984-vx8vx 1/1 Running 10.244.2.33 node2 app=nginx-pod
pc-deployment-66cb59b984-wnncx 1/1 Running 10.244.1.40 node1 app=nginx-pod
此时,通过podIP和容器暴露的端口就可以访问:
curl 10.244.1.39: 80
# 但现在都返回nginx的主页
为了方便直观看到请求被转发到哪个pod,修改三个pod的nginx的index.html页面:
[root@k8s-master01 ~] kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh
: echo "10.244.1.39" > /usr/share/nginx/html/index.html
#修改完毕之后,访问测试
[root@k8s-master01 ~] curl 10.244.1.39:80
10.244.1.39
[root@k8s-master01 ~] curl 10.244.2.33:80
10.244.2.33
[root@k8s-master01 ~] curl 10.244.1.40:80
10.244.1.40
创建service-clusterip.yaml文件:
apiVersion: v1
kind: Service
metadata:
name: service-clusterip
namespace: dev
spec:
selector:
app: nginx-pod
clusterIP: 10.97.97.97 # service的ip地址,如果不写,默认会生成一个
type: ClusterIP
ports:
- port: 80 # Service端口,自己指定
targetPort: 80 # pod端口,注意和上面要选择的pod保持一致
创建和查看service:
# 创建service
[root@k8s-master01 ~] kubectl create -f service-clusterip.yaml
service/service-clusterip created
# 查看service
[root@k8s-master01 ~] kubectl get svc -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
service-clusterip ClusterIP 10.97.97.97
查看service的详细信息,在这里有一个Endpoints列表,里面就是当前service可以负载到的服务入口:
[root@k8s-master01 ~] kubectl describe svc service-clusterip -n dev
Name: service-clusterip
Namespace: dev
Labels:
Annotations:
Selector: app=nginx-pod
Type: ClusterIP
IP: 10.97.97.97
Port:
TargetPort: 80/TCP
Endpoints: 10.244.1.39:80,10.244.1.40:80,10.244.2.33:80
Session Affinity: None
Events:
# 查看ipvs的映射规则
[root@k8s-master01 ~] ipvsadm -Ln
TCP 10.97.97.97:80 rr
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
# 访问10.97.97.97:80观察效果
[root@k8s-master01 ~] curl 10.97.97.97:80
10.244.2.33
下面是一个创建LoadBalancer类型的Service。创建完成后,可以通过ELB的IP:Port访问到后台Pod。
apiVersion: v1 kind: Service metadata: annotations: kubernetes.io/elb.id: 3c7caa5a-a641-4bff-801a-feace27424b6 labels: app: nginx name: nginx spec: loadBalancerIP: 10.78.42.242 # ELB实例的IP地址 ports: - name: service0 port: 80 protocol: TCP targetPort: 80 nodePort: 30120 selector: app: nginx type: LoadBalancer # 类型为LoadBalancer
上面metadata.annotations里的参数配置是CCE的LoadBalancer类型Service需要配置的参数,表示这个Service绑定哪个ELB实例。CCE还支持创建LoadBalancer类型Service时新建ELB实例,详细的内容请参见负载均衡(LoadBalancer)。