CRC-16/MODBUS 算法的三种实现方法

CRC-16/MODBUS 算法的三种实现方法

  • CRC计算方法
    • 直接计算CRC
    • 查短表(半字节查表法)
    • 查长表(全字节查表法)
    • 硬件逻辑门法

CRC计算方法

在CRC计算时只用8个数据位,起始位及停止位,如有奇偶校验位也包括奇偶校验位,都不参与CRC计算。
CRC计算方法是:
1、 加载一值为0XFFFF的16位寄存器,此寄存器为CRC寄存器。
2、 把第一个8位二进制数据(即通讯信息帧的第一个字节)与16位的CRC寄存器的相异或,异或的结果仍存放于该CRC寄存器中。
3、 把CRC寄存器的内容右移一位,用0填补最高位,并检测移出位是0还是1。
4、 如果移出位为零,则重复第三步(再次右移一位);如果移出位为1,CRC寄存器与0XA001进行异或。
5、 重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理。
6、 重复步骤2和5,进行通讯信息帧下一个字节的处理。
7、 将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低字节进行交换
8、 最后得到的CRC寄存器内容即为:CRC校验码。

直接计算CRC

unsigned int ModBusCRC16(unsigned char *data, unsigned int len)
{
    unsigned int i, j, tmp, CRC16;

    CRC16 = 0xFFFF;             //CRC寄存器初始值
    for (i = 0; i < len; i++)
    {
        CRC16 ^= data[i];
        for (j = 0; j < 8; j++)
        {
            tmp = (unsigned int)(CRC16 & 0x0001);
            CRC16 >>= 1;
            if (tmp == 1)
            {
                CRC16 ^= 0xA001;    //异或多项式
            }
        }
    }
/*根据需要对结果进行处理*/
//    data[i++] = (unsigned char) (CRC16 & 0x00FF);
//    data[i++] = (unsigned char) ((CRC16 & 0xFF00)>>8);
    return CRC16;
}

查短表(半字节查表法)

/* 半字节CRC16(Dow_右移逆序) 0xA001 余式表*/
const unsigned int CRC_16_Tab[16] =
{
  0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401,
  0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400
};

unsigned int ModBusCRC16(unsigned char *data, unsigned char len)
{
  unsigned char i,temp;
  unsigned int crc_16 = 0xffff;
  for(i=0;i<len;i++)
  {
    temp = ((unsigned char)(crc_16&0x000F))^(*data&0x0F);
    crc_16 >>= 4;
    crc_16 ^= CRC_16_Tab[temp];
    temp = ((unsigned char)(crc_16&0x000F))^(*data>>4);
    crc_16 >>= 4;
    crc_16 ^= CRC_16_Tab[temp];
  }
  return crc_16;
}

查长表(全字节查表法)

 
/* Table of CRC values for high–order byte */
const unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40
} ;

/* Table of CRC values for low–order byte */
const unsigned char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40
} ;

unsigned short ModBusCRC16(unsigned char *puchMsg,unsigned short usDataLen)
{
    unsigned char uchCRCHi = 0xFF ; /* high byte of CRC initialized */
    unsigned char uchCRCLo = 0xFF ; /* low byte of CRC initialized */
    unsigned uIndex ;               /* will index into CRC lookup table */
    while (usDataLen--)             /* pass through message buffer */
    {
        uIndex = uchCRCHi ^ *puchMsg++ ; /* calculate the CRC */
        uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex] ;
        uchCRCLo = auchCRCLo[uIndex] ;
    }
    return (uchCRCHi << 8 | uchCRCLo) ;
}

硬件逻辑门法

待实现:利用STM32CRC外设进行验证

参考链接
https://blog.csdn.net/u013625451/article/details/81239572/
https://www.amobbs.com/thread-5301191-1-1.html

你可能感兴趣的:(Modbus,串口通信,STM32,算法,stm32,crc,modbus,串口通信)