目录
第一章 快速入门
1、TypeScript简介
2、TypeScript 开发环境搭建
3、基本类型
类型声明
自动类型判断
类型别名
类型断言
4、编译选项
自动编译文件
自动编译整个项目
include
exclude
extends
files
compilerOptions
sourceMap
strictNullChecks
strictPropertyInitialization
noUnusedLocals
noUnusedParameters
5、webpack
6、Babel
第二章:面向对象
1、类(class)
2、面向对象的特点
封装
属性存取器
静态属性
this
继承
重写
抽象类(abstract class)
3、接口(Interface)
4、泛型(Generic)
最近刚学习完TypeScript的相关知识,将对应的学习笔分享给大家!欢迎大家一起探讨学习!TypeScript源于JavaScript,其相比于JS有更加严格地类型限制等规则,但是JS具备的东西TS都具备,两者并不是抽离开的。TS相比于JS更加方便后续代码的修改以及错误的查找。一般大型的项目也都是使用TS编写。因此TS的学习还是非常重要的呢,因此在本章我们一起来学习TypeScript的相关知识吧!
TypeScript是JavaScript的超集。
它对JS进行了扩展,向JS中引入了类型的概念,并添加了许多新的特性。
TS代码需要通过编译器编译为JS,然后再交由JS解析器执行。
TS完全兼容JS,换言之,任何的JS代码都可以直接当成JS使用。
相较于JS而言,TS拥有了静态类型,更加严格的语法,更强大的功能;TS可以在代码执行前就完成代码的检查,减小了运行时异常的出现的几率;TS代码可以编译为任意版本的JS代码,可有效解决不同JS运行环境的兼容问题;同样的功能,TS的代码量要大于JS,但由于TS的代码结构更加清晰,变量类型更加明确,在后期代码的维护中TS却远远胜于JS。
类型声明是TS非常重要的一个特点,通过类型声明可以指定TS中变量(参数、形参)的类型。指定类型后,当为变量赋值时,TS编译器会自动检查值是否符合类型声明,符合则赋值,否则报错。
简而言之,类型声明给变量设置了类型,使得变量只能存储某种类型的值。
语法:
let 变量: 类型;
let 变量: 类型 = 值;
function fn(参数: 类型, 参数: 类型): 类型
{ ... }
TS拥有自动的类型判断机制,当对变量的声明和赋值是同时进行的,TS编译器会自动判断变量的类型。所以如果你的变量的声明和赋值时同时进行的,可以省略掉类型声明。
类型:
类型 | 例子 | 描述 |
---|---|---|
number | 1, -33, 2.5 | 任意数字 |
string | 'hi', "hi", hi |
任意字符串 |
boolean | true、false | 布尔值true或false |
字面量 | 其本身 | 限制变量的值就是该字面量的值 |
any | * | 任意类型 |
unknown | * | 类型安全的any |
void | 空值(undefined) | 没有值(或undefined) |
never | 没有值 | 不能是任何值 |
object | {name:'孙悟空'} | 任意的JS对象 |
array | [1,2,3] | 任意JS数组 |
tuple | [4,5] | 元素,TS新增类型,固定长度数组 |
enum | enum{A, B} | 枚举,TS中新增类型 |
number
let decimal: number = 6;
let hex: number = 0xf00d;
let binary: number = 0b1010;
let octal: number = 0o744;
let big: bigint = 100n;
boolean
let isDone: boolean = false;
string
let color: string = "blue";
color = 'red';
let fullName: string = `Bob Bobbington`;
let age: number = 37;
let sentence: string = `Hello, my name is ${fullName}.
I'll be ${age + 1} years old next month.`;
字面量
也可以使用字面量去指定变量的类型,通过字面量可以确定变量的取值范围
let color: 'red' | 'blue' | 'black';
let num: 1 | 2 | 3 | 4 | 5;
any
//显示any
let d: any = 4;
d = 'hello';
d = true;
//隐式any
let d;
d = 'hello';
d = true;
unknown
let notSure: unknown = 4;
notSure = 'hello';
//unknown 实际上就是一个类型安全的any
//unknown 类型的变量,不能直接赋值给其他的变量
//可以采用如下的方法
if(typeof e==='string'){
s=e;
}
//类型断言
s=e as string;
//或者
s=e
void
let unusable: void = undefined;
//表示函数没有返回值
function fn():void{
}
never
//没有值,永远不会返回结果
function error(message: string): never {
throw new Error(message);
}
object(没啥用)
let obj: object = {};
//{}用来指定对象中可以包含哪些属性
//语法:{属性名:属性值,属性名:属性值}
//在属性名后面加上? 表示属性是可选的
let b:{name:string,age?number};
b={name:'孙悟空',age:18};
//[propName:string]:any 表示任意类型的属性
let c:{name:string,[propNmae:string]:any};
c={name:'猪八戒',age:18,gender:'男'};
//设置函数结构的类型声明;
//语法:(形参:类型,形参:类型...)=>返回值
let a:(a:number,b:number)=>number;
array
//表示数字数组
let list: number[] = [1, 2, 3];
let list: Array = [1, 2, 3];
tuple
//元组:是固定长度的数组
let x: [string, number];
x = ["hello", 10];
enum
//枚举
enum Gender{
Male=0,
Famale=1
}
let i:{name:string,gender:Gender};
i={
name:'孙悟空',
gender:Gender.Male//'male'
}
console.log(i.gender===Gender.Male);
type myType=string;
let k:1|2|3|4|5;
let l:1|2|3|4|5;
let m:myType;
有些情况下,变量的类型对于我们来说是很明确,但是TS编译器却并不清楚,此时,可以通过类型断言来告诉编译器变量的类型,断言有两种形式:
第一种
let someValue: unknown = "this is a string";
let strLength: number = (someValue as string).length;
第二种
let someValue: unknown = "this is a string";
let strLength: number = (someValue).length;
编译文件时,使用 -w 指令后,TS编译器会自动监视文件的变化,并在文件发生变化时对文件进行重新编译。
示例:
tsc xxx.ts -w
如果直接使用tsc指令,则可以自动将当前项目下的所有ts文件编译为js文件。
但是能直接使用tsc命令的前提时,要先在项目根目录下创建一个ts的配置文件 tsconfig.json。
tsconfig.json是一个JSON文件,添加配置文件后,只需只需 tsc 命令即可完成对整个项目的编译
配置选项:
定义希望被编译文件所在的目录,默认值:["**/*"] 任意目录下的任意文件。
示例:
"include":["src/**/*", "tests/**/*"]
上述示例中,所有src目录和tests目录下的文件都会被编译。
定义需要排除在外的目录,默认值:["node_modules", "bower_components", "jspm_packages"]。
示例:
"exclude": ["./src/hello/**/*"]
上述示例中,src下hello目录下的文件都不会被编译。
定义被继承的配置文件。
示例:
"extends": "./configs/base"
上述示例中,当前配置文件中会自动包含config目录下base.json中的所有配置信息。
指定被编译文件的列表,只有需要编译的文件少时才会用到。
示例:
"files": [
"core.ts",
"sys.ts",
"types.ts",
"scanner.ts",
"parser.ts",
"utilities.ts",
"binder.ts",
"checker.ts",
"tsc.ts"
]
列表中的文件都会被TS编译器所编译
编译选项是配置文件中非常重要也比较复杂的配置选项。在compilerOptions中包含多个子选项,用来完成对编译的配置。项目选项如下:
示例:
"compilerOptions": {
"target": "ES6"
}
如上设置,我们所编写的ts代码将会被编译为ES6版本的js代码
示例:
"compilerOptions": {
"target": "ES6",
"lib": ["ES6", "DOM"],
"outDir": "dist",
"outFile": "dist/aa.js"
}
示例:
"compilerOptions": {
"module": "CommonJS"
}
示例:
"compilerOptions": {
"outDir": "dist"
}
设置后编译后的js文件将会生成到dist目录。
示例:
"compilerOptions": {
"outFile": "dist/app.js"
}
示例:
"compilerOptions": {
"rootDir": "./src"
}
示例:
"compilerOptions": {
"allowJs": true,
"checkJs": true
}
是否生成sourceMap - 默认值:false
严格检查
alwaysStrict:总是以严格模式对代码进行编译,用来设置编译后的文件是否为严格模式。
noImplicitAny:禁止隐式的any类型。
noImplicitThis:禁止类型不明确的this。
strictBindCallApply:严格检查bind、call和apply的参数列表。
strictFunctionTypes:严格检查函数的类型。
严格的空值检查
严格检查属性是否初始化
额外检查
noFallthroughCasesInSwitch:检查switch语句包含正确的break
noImplicitReturns:检查函数没有隐式的返回值
检查未使用的局部变量
检查未使用的参数
高级
allowUnreachableCode:检查不可达代码。可选值:true,忽略不可达代码。false,不可达代码将引起错误。
noEmitOnError:有错误的情况下不进行编译。默认值:false。
通常情况下,实际开发中我们都需要使用构建工具对代码进行打包,TS同样也可以结合构建工具一起使用,下边以webpack为例介绍一下如何结合构建工具使用TS。
步骤
a.初始化项目
进入项目根目录,执行命令 npm init -y。
主要作用:创建package.json文件2
b.下载构建工具
npm i -D webpack webpack-cli webpack-dev-server typescript ts-loader clean-webpack-plugin
共安装了7个包
c.根目录下创建webpack的配置文件webpack.config.js
const path = require("path");
const HtmlWebpackPlugin = require("html-webpack-plugin");
const { CleanWebpackPlugin } = require("clean-webpack-plugin");
module.exports = {
optimization:{
minimize: false // 关闭代码压缩,可选
},
entry: "./src/index.ts",
devtool: "inline-source-map",
devServer: {
contentBase: './dist'
},
output: {
path: path.resolve(__dirname, "dist"),
filename: "bundle.js",
environment: {
arrowFunction: false // 关闭webpack的箭头函数,可选
}
},
resolve: {
extensions: [".ts", ".js"]
},
module: {
rules: [
{
test: /\.ts$/,
use: {
loader: "ts-loader"
},
exclude: /node_modules/
}
]
},
plugins: [
new CleanWebpackPlugin(),
new HtmlWebpackPlugin({
title:'TS测试'
}),
]
}
d.根目录下创建tsconfig.json,配置可以根据自己需要
{
"compilerOptions": {
"target": "ES2015",
"module": "ES2015",
"strict": true
}
}
e.修改package.json添加如下配置
{
...略...
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "webpack",
"start": "webpack serve --open chrome.exe"
},
...略...
}
f.在src下创建ts文件,并在并命令行执行npm run build
对代码进行编译,或者执行npm start
来启动开发服务器
经过一系列的配置,使得TS和webpack已经结合到了一起,除了webpack,开发中还经常需要结合babel来对代码进行转换以使其可以兼容到更多的浏览器,在上述步骤的基础上,通过以下步骤再将babel引入到项目中。
a.安装依赖包:
npm i -D @babel/core @babel/preset-env babel-loader core-js
共安装了4个包,分别是:
b.修改webpack.config.js配置文件
...略...
module: {
rules: [
{
test: /\.ts$/,
use: [
{
loader: "babel-loader",
options:{
presets: [
[
"@babel/preset-env",
{
"targets":{
"chrome": "58",
"ie": "11"
},
"corejs":"3",
"useBuiltIns": "usage"
}
]
]
}
},
{
loader: "ts-loader",
}
],
exclude: /node_modules/
}
]
}
...略...
如此一来,使用ts编译后的文件将会再次被babel处理,使得代码可以在大部分浏览器中直接使用,可以在配置选项的targets中指定要兼容的浏览器版本。
面向对象是程序中一个非常重要的思想,它被很多同学理解成了一个比较难,比较深奥的问题,其实不然。面向对象很简单,简而言之就是程序之中所有的操作都需要通过对象来完成。
举例来说:
操作浏览器要使用window对象
操作网页要使用document对象
操作控制台要使用console对象
一切操作都要通过对象,也就是所谓的面向对象,那么对象到底是什么呢?这就要先说到程序是什么,计算机程序的本质就是对现实事物的抽象,抽象的反义词是具体,比如:照片是对一个具体的人的抽象,汽车模型是对具体汽车的抽象等等。程序也是对事物的抽象,在程序中我们可以表示一个人、一条狗、一把枪、一颗子弹等等所有的事物。一个事物到了程序中就变成了一个对象。
在程序中所有的对象都被分成了两个部分数据和功能,以人为例,人的姓名、性别、年龄、身高、体重等属于数据,人可以说话、走路、吃饭、睡觉这些属于人的功能。数据在对象中被成为属性,而功能就被称为方法。所以简而言之,在程序中一切皆是对象。
要想面向对象,操作对象,首先便要拥有对象,那么下一个问题就是如何创建对象。要创建对象,必须要先定义类,所谓的类可以理解为对象的模型,程序中可以根据类创建指定类型的对象,举例来说:可以通过Person类来创建人的对象,通过Dog类创建狗的对象,通过Car类来创建汽车的对象,不同的类可以用来创建不同的对象。
定义类:
class 类名 {
属性名: 类型;
//构造函数会在函数调用时使用
constructor(参数: 类型){
this.属性名 = 参数;
}
方法名(){
....
}
}
示例:
class Person{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
//定义方法
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
使用类:
const p = new Person('孙悟空', 18);
p.sayHello();
//若使用的是类属性或者静态属性,则使用类去调用而不是实例
class Person{
name:string='孙悟空';
static age:number=18;
}
const per=new Person();
console.log(Person.age);
//readonly开头的属性表示有一个只读属性无法修改
对象实质上就是属性和方法的容器,它的主要作用就是存储属性和方法,这就是所谓的封装。默认情况下,对象的属性是可以任意的修改的,为了确保数据的安全性,在TS中可以对属性的权限进行设置。
只读属性(readonly):
如果在声明属性时添加一个readonly,则属性便成了只读属性无法修改。
TS中属性具有三种修饰符:
示例:
public
class Person{
public name: string; // 写或什么都不写都是public
public age: number;
constructor(name: string, age: number){
this.name = name; // 可以在类中修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中可以修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 可以通过对象修改
protected
class Person{
protected name: string;
protected age: number;
constructor(name: string, age: number){
this.name = name; // 可以修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中可以修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
private
class Person{
private name: string;
private age: number;
constructor(name: string, age: number){
this.name = name; // 可以修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中不能修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
class C{
name:string
age:number
constructor(name:string,age:number){
this.name=name;
this.age=age;
}
}
//等价于如下代码
class C{
constructor(public name:string,public age:number)
}
对于一些不希望被任意修改的属性,可以将其设置为private。直接将其设置为private将导致无法再通过对象修改其中的属性。我们可以在类中定义一组读取、设置属性的方法,这种对属性读取或设置的属性被称为属性的存取器。
读取属性的方法叫做setter方法,设置属性的方法叫做getter方法
示例:
class Person{
private _name: string;
constructor(name: string){
this._name = name;
}
get name(){
return this._name;
}
set name(name: string){
this._name = name;
}
}
const p1 = new Person('孙悟空');
console.log(p1.name); // 通过getter读取name属性
p1.name = '猪八戒'; // 通过setter修改name属性
静态属性(方法),也称为类属性。使用静态属性无需创建实例,通过类即可直接使用。静态属性(方法)使用static开头。
示例:
class Tools{
static PI = 3.1415926;
static sum(num1: number, num2: number){
return num1 + num2
}
}
console.log(Tools.PI);
console.log(Tools.sum(123, 456));
在类中,使用this表示当前对象。
继承时面向对象中的又一个特性。通过继承可以将其他类中的属性和方法引入到当前类中。
示例:
class Animal{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
}
class Dog extends Animal{
bark(){
console.log(`${this.name}在汪汪叫!`);
}
}
const dog = new Dog('旺财', 4);
dog.bark();
通过继承可以在不修改类的情况下完成对类的扩展。
发生继承时,如果子类中的方法会替换掉父类中的同名方法,这就称为方法的重写。
示例:
class Animal{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
run(){
console.log(`父类中的run方法!`);
}
}
class Dog extends Animal{
bark(){
console.log(`${this.name}在汪汪叫!`);
}
run(){
console.log(`子类中的run方法,会重写父类中的run方法!`);
}
}
const dog = new Dog('旺财', 4);
dog.bark();
在子类中可以使用super来完成对父类的引用。
class Dog extends Animals{
age:number;
//name为父类构造方法中的参数
constructor(name: string, age: number){
super(name)
this.age = age;
}
}
抽象类是专门用来被其他类所继承的类,它只能被其他类所继承不能用来创建实例
abstract class Animal{
abstract run(): void;
bark(){
console.log('动物在叫~');
}
}
class Dog extends Animals{
run(){
console.log('狗在跑~');
}
}
使用abstract开头的方法叫做抽象方法,抽象方法没有方法体只能定义在抽象类中,继承抽象类时抽象方法必须要实现。
接口的作用类似于抽象类,不同点在于接口中的所有方法和属性都是没有实值的,换句话说接口中的所有方法都是抽象方法。接口主要负责定义一个类的结构,接口可以去限制一个对象的接口,对象只有包含接口中定义的所有属性和方法时才能匹配接口。同时,可以让一个类去实现接口,实现接口时类中要保护接口中的所有属性。
示例(检查对象类型):
interface Person{
name: string;
sayHello():void;
}
function fn(per: Person){
per.sayHello();
}
fn({name:'孙悟空', sayHello() {console.log(`Hello, 我是 ${this.name}`)}});
示例(实现)
interface Person{
name: string;
sayHello():void;
}
class Student implements Person{
constructor(public name: string) {
}
sayHello() {
console.log('大家好,我是'+this.name);
}
}
定义一个函数或类时,有些情况下无法确定其中要使用的具体类型(返回值、参数、属性的类型不能确定),此时泛型便能够发挥作用。
举个例子:
function test(arg: any): any{
return arg;
}
上例中,test函数有一个参数类型不确定,但是能确定的时其返回值的类型和参数的类型是相同的,由于类型不确定所以参数和返回值均使用了any,但是很明显这样做是不合适的,首先使用any会关闭TS的类型检查,其次这样设置也不能体现出参数和返回值是相同的类型
使用泛型:
function test(arg: T): T{
return arg;
}
这里的
就是泛型,T是我们给这个类型起的名字(不一定非叫T),设置泛型后即可在函数中使用T来表示该类型。所以泛型其实很好理解,就表示某个类型。
那么如何使用上边的函数呢?
可以同时指定多个泛型,泛型间使用逗号隔开:
function test(a: T, b: K): K{
return b;
}
test(10, "hello");
使用泛型时,完全可以将泛型当成是一个普通的类去使用。
类中同样可以使用泛型:
class MyClass{
prop: T;
constructor(prop: T){
this.prop = prop;
}
}
除此之外,也可以对泛型的范围进行约束。
interface MyInter{
length: number;
}
function test(arg: T): number{
return arg.length;
}
使用T extends MyInter表示泛型T必须是MyInter的子类,不一定非要使用接口类和抽象类同样适用。
方式一(直接使用):
test(10)
使用时可以直接传递参数使用,类型会由TS自动推断出来,但有时编译器无法自动推断时还需要使用下面的方式
方式二(指定类型):
test(10)
也可以在函数后手动指定泛型。可以同时指定多个泛型,泛型间使用逗号隔开:
function test(a: T, b: K): K{
return b;
}
test(10, "hello");
使用泛型时,完全可以将泛型当成是一个普通的类去使用。类中同样可以使用泛型:
class MyClass{
prop: T;
constructor(prop: T){
this.prop = prop;
}
}
除此之外,也可以对泛型的范围进行约束。
interface MyInter{
length: number;
}
function test(arg: T): number{
return arg.length;
}
使用T extends MyInter表示泛型T必须是MyInter的子类,不一定非要使用接口类和抽象类同样适用。