目录
- 图像的轮廓
-
- 轮廓的特征
-
- 轮廓面积
- 轮廓周长
- 轮廓近似
- 凸包
- 边界矩形
- 最小外接圆
- 椭圆拟合
- 直线拟合
- 图像的矩特征
-
图像的轮廓
![OpenCV图像处理——轮廓检测_第1张图片](http://img.e-com-net.com/image/info8/670b30c6e9ab4555bc9cef5ff5ba13a3.jpg)
查找轮廓
binary,contours,hierarchy=cv.findContours(img,mode,method)
![OpenCV图像处理——轮廓检测_第2张图片](http://img.e-com-net.com/image/info8/3bb653edb38b41cfa3488a2ca0948ae3.jpg)
![OpenCV图像处理——轮廓检测_第3张图片](http://img.e-com-net.com/image/info8/d14d6ef03e594b6cbb2250113c3826f4.jpg)
![OpenCV图像处理——轮廓检测_第4张图片](http://img.e-com-net.com/image/info8/4e777c6d2dca4a6da0111fd42a7316f3.jpg)
![OpenCV图像处理——轮廓检测_第5张图片](http://img.e-com-net.com/image/info8/62346a430ea745e1b3b79ff3bbee843c.jpg)
![OpenCV图像处理——轮廓检测_第6张图片](http://img.e-com-net.com/image/info8/3a2fef828b984ac0990a2284a6b53da8.jpg)
绘制轮廓
cv.drawContours(img,coutours,index,color,width)
![OpenCV图像处理——轮廓检测_第7张图片](http://img.e-com-net.com/image/info8/05fe43cdf17347fc9e8a7535d8085aff.jpg)
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny=cv.Canny(img_gray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
img=cv.drawContours(img,contours,-1,(0,0,255),2)
plt.imshow(img[:,:,::-1])
![OpenCV图像处理——轮廓检测_第8张图片](http://img.e-com-net.com/image/info8/2eaef6e861d04cceb697fa20c98850c2.jpg)
轮廓的特征
![在这里插入图片描述](http://img.e-com-net.com/image/info8/ceb8a69cb2b74509843e5b7b092c6cfd.jpg)
轮廓面积
area=cv.contourArea(cnt)
轮廓周长
perimeter=cv.arcLength(cnt,isclosed)
![在这里插入图片描述](http://img.e-com-net.com/image/info8/dcf5e305e0e546f19dcf4cd2efa2c345.jpg)
轮廓近似
![OpenCV图像处理——轮廓检测_第9张图片](http://img.e-com-net.com/image/info8/40faca8fb6de460c907590772bfe8369.jpg)
approx=cv.approxPolyDP(cnt,epsilon,isclosed)
![OpenCV图像处理——轮廓检测_第10张图片](http://img.e-com-net.com/image/info8/80860b2b59614381a9f23243aab697e1.jpg)
img = cv2.imread('./汪学长的随堂资料/4/图像操作/contours2.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(img_gray, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt=contours[0]
area=cv.contourArea(cnt)
length=cv.arcLength(cnt,True)
esplion=0.1*length
approx=cv.approxPolyDP(cnt,esplion,True)
img=cv.polylines(img,[approx],True,(0,0,255),2)
plt.imshow(img[:,:,::-1])
![OpenCV图像处理——轮廓检测_第11张图片](http://img.e-com-net.com/image/info8/cbf6513be3374265a21af9621148a44c.jpg)
凸包
![在这里插入图片描述](http://img.e-com-net.com/image/info8/3d64ee7d5d9044cb8774bcc080ede424.jpg)
hull=cv.convexHull(points,clockwise,returnPoints)
![OpenCV图像处理——轮廓检测_第12张图片](http://img.e-com-net.com/image/info8/e3e74af7a3ca4821912a19fdf1cae5ba.jpg)
![在这里插入图片描述](http://img.e-com-net.com/image/info8/10d8bf53091e4e89af637e458a0776b0.jpg)
img=cv.imread('./image/star 2.jpeg')
img1=img.copy()
imggray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
canny=cv.canny(imggray,127,255,0)
contours,hi=cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
hulls=[]
for cnt in contours:
hull=cv.convexHull(cnt)
hulls.append(hull)
img1=cv.drawContours(img1,hulls,-1,(0,255,0),2)
plt.imshow(img1[:,:,::-1])
![OpenCV图像处理——轮廓检测_第13张图片](http://img.e-com-net.com/image/info8/d5896e6ccf4e4fa9a7065270f5498124.jpg)
边界矩形
![OpenCV图像处理——轮廓检测_第14张图片](http://img.e-com-net.com/image/info8/7d9ac58a62474bfb9f5a9b34802675e6.jpg)
![OpenCV图像处理——轮廓检测_第15张图片](http://img.e-com-net.com/image/info8/d48c7875fde54b838065ff882eb3a4ab.jpg)
img=cv.imread('./image/arrows,jpg')
img_gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh=cv.threshold(img_gray,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
x,y,w,h=cv.boundingRect(cnt)
imgRect=cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3)
plt.imshow(imgRect[:,:,::-1])
![OpenCV图像处理——轮廓检测_第16张图片](http://img.e-com-net.com/image/info8/d6f4fab430824931ba9aa5581aa504d2.jpg)
s=cv.minAreaRect(cnt)
a=cv.boxPoints(s)
a=np.int0(a)
cv.polylines(imgRect,[a],True,(0,0,255),3)
plt.imshow(imgRect[:,:,::-1])
![OpenCV图像处理——轮廓检测_第17张图片](http://img.e-com-net.com/image/info8/fb988ec39b774347ab12c644d6da6a26.jpg)
最小外接圆
![OpenCV图像处理——轮廓检测_第18张图片](http://img.e-com-net.com/image/info8/784150c3fcfe4629b963161fca9a319a.jpg)
(x,y),r=cv.minEnclosingCircle(cnt)
center=(int(x),int(y))
r=int(r)
imgcircle=cv.circle(img,center,r,(0,255,0),3)
plt.imshow(imgcircle[:,:,::-1])
![OpenCV图像处理——轮廓检测_第19张图片](http://img.e-com-net.com/image/info8/fa00f84a089f4022a475b4ec636a09e0.jpg)
椭圆拟合
![OpenCV图像处理——轮廓检测_第20张图片](http://img.e-com-net.com/image/info8/eaefda25471647d7a25bfd0bbe8ccd4b.jpg)
ellipse=cv.fitEllipse(cnt)
imgellipse=cv.ellipse(img,ellipse,(0,255,255,3))
plt.imshow(imgellipse[:,:,::-1])
![OpenCV图像处理——轮廓检测_第21张图片](http://img.e-com-net.com/image/info8/ba7d4b31bb45473bb9692228ea34043f.jpg)
直线拟合
![在这里插入图片描述](http://img.e-com-net.com/image/info8/91b41cdd7e74484c8ba66edcfb338042.jpg)
output=cv.fitLine(points,distType,param,aeps)
![OpenCV图像处理——轮廓检测_第22张图片](http://img.e-com-net.com/image/info8/db8c8c4ddf52417db93c2c81bcc91c66.jpg)
[vx,vy,x,y]=cv.fitLine(cnt,cv.DIST_L2,0,0.01,0.01)
rows,cols=img.shape[:2]
lefty=int((-x*vy/vx)+y)
righty=int(((cols-x)*vy/vx)+y)
imgline=cv.line(img,(0,lefty),(cols-1,righty),(0,0,255),3)
plt.imshow(imgline[:,:,::-1])
![OpenCV图像处理——轮廓检测_第23张图片](http://img.e-com-net.com/image/info8/99a99d5129fb4309ad965480d50f30ce.jpg)
图像的矩特征
![OpenCV图像处理——轮廓检测_第24张图片](http://img.e-com-net.com/image/info8/6e13a90f352b43968cb972feeb0b993a.jpg)
矩的概念
![OpenCV图像处理——轮廓检测_第25张图片](http://img.e-com-net.com/image/info8/ddba30b46d934a68a8e4dcb1b5639043.jpg)
图像中的矩特征
![OpenCV图像处理——轮廓检测_第26张图片](http://img.e-com-net.com/image/info8/704527d148b449588aa287d8669af017.jpg)
![OpenCV图像处理——轮廓检测_第27张图片](http://img.e-com-net.com/image/info8/ed4f3c6f9d9342f0a1046183b6dae10e.jpg)
moments(array,binaryImage=False)
![OpenCV图像处理——轮廓检测_第28张图片](http://img.e-com-net.com/image/info8/4852d6923dec439f83e3df2a44abaec4.jpg)
img=cv.imread('./image/arrows.jpg',0)
imgmn=cv.moments(img)
imghu=cv.HuMoments(imgmn)
ret,thresh=cv.threshold(img,127,255,0)
contours,hi=cv.findContours(thresh,1,2)
cnt=contours[1]
mn=cv.moments(cnt)
hu=cv.HuMoments(mn)