redis存储有固定内存,如果以某种方式达到其内存极限,我们的系统将开始出现故障,Redis内存使用量可能会成为瓶颈。
使用最新版本的Spring Boot,有两个主要依赖项- Spring Boot Web和Spring Data Reactive Redis,Spring Data Reactive Redis将用于连接和使用Redis的内部应用程序。从本质上讲,Redis依赖项默认使用Lettuce Redis客户端,并且受最新版本的Spring Boot支持。
降低内存使用量使用MessagePack,MessagePack工作原理可以参照官网说明MsgPack spec.md,其特征以官方msgpack官网用一句话总结:It’s like JSON.but fast and small。
引入依赖,在pom.xml文件中添加以下依赖项:
<!--redis内存压缩-->
<dependency>
<groupId>org.msgpack</groupId>
<artifactId>msgpack-core</artifactId>
<version>0.8.20</version>
</dependency>
<dependency>
<groupId>org.msgpack</groupId>
<artifactId>jackson-dataformat-msgpack</artifactId>
<version>0.8.20</version>
</dependency>
创建了一个名为控制器MsgPackController:
class MsgPackRedisSerializer<T> implements RedisSerializer<T> {
public static final Charset DEFAULT_CHARSET;
private final JavaType javaType;
private ObjectMapper objectMapper = new ObjectMapper(new MessagePackFactory())
.registerModules(new Jdk8Module(), new JavaTimeModule())
.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, true)
.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false)
.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
.setSerializationInclusion(JsonInclude.Include.NON_NULL);
public MsgPackRedisSerializer(Class<T> type) {
this.javaType = JavaTypeHandler.getJavaType(type);
}
public T deserialize(@Nullable byte[] bytes) throws SerializationException {
if (bytes == null || bytes.length == 0) {
return null;
} else {
try {
return this.objectMapper.readValue(bytes, 0, bytes.length, this.javaType);
} catch (Exception ex) {
throw new SerializationException("Could not read MsgPack JSON: " + ex.getMessage(), ex);
}
}
}
public byte[] serialize(@Nullable Object value) throws SerializationException {
if (value == null) {
return new byte[0];
} else {
try {
return this.objectMapper.writeValueAsBytes(value);
} catch (Exception ex) {
throw new SerializationException("Could not write MsgPack JSON: " + ex.getMessage(), ex);
}
}
}
static {
DEFAULT_CHARSET = StandardCharsets.UTF_8;
}
}
实例MessagePackFactory被传递到中ObjectMapper。这将充当Redis和我们的Spring Boot应用程序之间数据的二进制格式和字符串格式之间的桥梁。
比较dataset.bytes当前内存与先前记录的内存,使用率将减少一半,我们可以进一步减少它。
它不旨在最大程度地压缩,也不旨在与任何其他压缩库兼容。相反,它的目标是非常高的速度和合理的压缩。
使用Snappy就像在中添加依赖项一样简单pom.xml,并且几行代码更改。只需Snappy.compress在序列化和Snappy.decompress反序列化时添加即可:
<dependency>
<groupId>org.xerial.snappy</groupId>
<artifactId>snappy-java</artifactId>
<version>1.1.7.3</version>
</dependency>
配置redis序列化配置类:
public class SnappyMsgPackRedisSerializer<T> implements RedisSerializer<T> {
public static final Charset DEFAULT_CHARSET;
private final JavaType javaType;
private ObjectMapper objectMapper = new ObjectMapper(new MessagePackFactory())
.registerModules(new Jdk8Module(), new JavaTimeModule())
.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, true)
.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false)
.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
.setSerializationInclusion(JsonInclude.Include.NON_NULL);
public SnappyMsgPackRedisSerializer(Class<T> type) {
this.javaType = JavaTypeHandler.getJavaType(type);
}
@Override
public T deserialize(@Nullable byte[] bytes) throws SerializationException {
if (bytes == null || bytes.length == 0) {
return null;
} else {
try {
final byte[] uncompressBytes = Snappy.uncompress(bytes); //解压
return this.objectMapper.readValue(uncompressBytes, 0, uncompressBytes.length, this.javaType);
} catch (Exception ex) {
throw new SerializationException("Could not read MsgPack JSON: " + ex.getMessage(), ex);
}
}
}
@Override
public byte[] serialize(@Nullable Object value) throws SerializationException {
if (value == null) {
return new byte[0];
} else {
try {
final byte[] bytes = this.objectMapper.writeValueAsBytes(value);
return Snappy.compress(bytes); //压缩
} catch (Exception ex) {
throw new SerializationException("Could not write MsgPack JSON: " + ex.getMessage(), ex);
}
}
}
static {
DEFAULT_CHARSET = StandardCharsets.UTF_8;
}
}