腾讯大数据sre面经

面试总览

腾讯的面试流程慢是出了名的,技术面一共三面加hr面总共4面,历时一个半月,倘若要想拿到offer还得加上两周,差不多2个月时间,所以各位有志去鹅厂的同学们一定不要裸辞,不要裸辞,不要裸辞(重要的事情说三遍)。

具体时间线

20210301简历投递(内推)--> 20210310一面(小组长) -- > 20210322二面(二线老板)-->20210328(GM面)--> 20210404(HR面)

面试内容

一面(1h10min):主要涉及大数据组件基础知识,java功底,数据链路等:

hdfs各个组件(hdfs,yarn,zkfc,journalnode)的作用,namenode ha实现方式
hbase读写流程,常用api
flink架构,任务提交流程,flink的checkpoint,flink实现excatly once(内部与端到端)
clickhouse架构,为什么比其他olap引擎快,sql解析流程
linux为什么叫文件系统,ceph文件系统,常用的bash命令,比如awk等
java相关:jvm架构,gc方法(对比),线程创建的三种方式,synchornized和lock的区别,各自的应用场景,skipList跳表,hashmap
谈项目,讲数据链路(实时与批处理数据),数据规模,数据流量ops这些

二面(30min):主要涉及项目经验,简单考察下基础:

kafa如何保证数据一致性(source,broker,sink三个地方)
yarn调度策略,资源管理如何做,权限怎么分配
hdfs小文件问题,hive产生了小文件如何调优,hive数据倾斜原因以及处理方法
针对集群做了哪些优化,调整了哪些参数

GM面(35min):无基础,主要项目经验:

简单介绍做过的项目,然后挑一个项目,你担任的角色是这样,主要流程是怎样,产出有哪些,在这过程中遇到了哪些问题,如何解决,你的成长是什么。
另外问了个在职业生涯中遇到的最大事故是什么,当时是如何去解决的,定位问题的方式是怎样,以及后续如何去避免这样的事故
最后瞎聊了下腾讯云的大数据sre团队发展情况,以及员工成长路线,以及base地的transform。

四面(45min):个人经历,项目情况

简单个人介绍包括学历背景,工作经历,以及每段跳槽原因,挑一段工作项目详细讲解(虽然她也不一定听得懂,我猜测主要考察表达能力),然后是讲讲对大数据sre岗位的理解,期望薪资,目前竞企offer情况,最后明确告知期望薪资涨幅较大,不会在竞企offer上做大幅调整,最多持平,且具体的方案最快也要一周半才能出来。所以最后还是放弃了鹅厂入职了虾皮。

面试总结

总的来说,腾讯云的大数据sre面试也是偏基础且贴近个人工作内容,假如小伙伴们平时注重积累的话,去腾讯问题不大。最后预祝跑路的同学们都能拿到理想的offer!
(shopee最近很缺人哦,有想法的同学可查看:https://mp.weixin.qq.com/s?__biz=MzkzMzIzNDU0MA==&mid=2247483747&idx=1&sn=aaf8361ca6fbd47245fd0c92d274eb85&chksm=c24ed360f5395a76af2dba45e814bf5cd1d39b739deff18584753d677f96945ef7a6b552ea14&token=90945026&lang=zh_CN#rd)

你可能感兴趣的:(腾讯大数据sre面经)