在计算机中是以字节为单位,每个地址对应一个字节,一个字节8bit。在C中,除了8bit的char以外,还有16bit的short,32位的int,64位long,当然具体要由编译器决定,可以通过sizeof来获取不同类型在内存中占用的字节数。在计算机系统中,当物理单位的长度大于1个字节时,就要区分字节顺序。常见的字节顺序有两种:Big Endian(High-byte first)和Litter Endian(Low-byte first),当然还有其他字节顺序,但不常见,例如Middle Endian。
一、最高有效位、最低有效位
要理解Big Endian和Little Endian,首先要搞清楚MSB和LSB。
1、MSB(Most Significant Bit)最高有效位
在一个n位二进制数字中n-1位,也就是最左边的位。
2、LSB(Least Significant Bit)最低有效位
指最右边的位。
例如:一个int类型的整型123456789
二进制表达方式:0000 0111 0101 1011 1100 1101 0001 0101(从右向左,每4bit对齐,最左边(高位)不够用0补齐)
十六进制表达方式:0 7 5 B C D 1 5
按照上述关于MSB和LSB的意思,在二进制表达方式中,bit从0开始,从右向左,bit0为最低有效位,而bit23为最高有效位。而我们一般称左边的0x07为高位字节,0x15为低位字节。
再通俗一点解释就是:8421码的,8这端为高位,1这端为低位,相应的字节则分别称为高位字节和低位字节。
二、内存地址
在内存中,多字节对象都是被存储为连续的字节序列。例如在C语言中,一个类型为int的变量n,如果其存储的首个字节的地址为0x1000,那么剩余3个字节的地址将存储在0x1001~0x1003。总之,不管具体字节顺序是以什么方式排列,内存地址的分配一般是从小到大的增长。我们常把0x1000称为低地址端,把0x1003称为高地址端。
三、大端和小端
搞清楚MSB、LSB、高位字节、低位字节、内存地址之后,再理解大端和小端,就相当容易了,先看看概念:
小端Little Endian:低字节存放在低地址,低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
大端Big Endian:高字节存放在低地址,即高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
以二节中的例子int类型整数123456789为例:
小端在内存中排列:0x15 0xCD 0x5B 0x07 (低位在前)
大端在内存中排列:0x07 0x5B 0xCD 0x15 (高位在前)
从例子中可以看出小端比较符合人的思维,而大端则看上去非常直观。
注:
1、例子中是假设编译器支持int为32位的前提下,如果是16位,那大端的排列则为:0xCD 0x15 0x07 0x5B。
2、大小端一般是由CPU架构决定,常见的Intel、AMD的CPU使用的是小端字节序,而PowerPC使用的是大端字节序,有些ARM处理器还可以选择用大端还是小端模式,具体请自行查阅。
3、c#中,字节序跟编译平台所在的CPU相关,例如在Intel x86 CPU架构的windows平台中,c#采用的小端序。而Java由于其JVM屏蔽了不同CPU架构导致的字节序差异,所以默认采用大端字节序。所以,大小端模式是由CPU决定,而编译器又可能会改变这种模式。
字节序
内存地址
int(16bit)
int(32bit)
特点
小端
0x1001,0x1002,0x1003,0x1004
0x15 0xCD 0x5B 0x07
0x15 0xCD 0x5B 0x07
低地址端存储低位字节,低位在前
大端
0x1001,0x1002,0x1003,0x1004
0xCD 0x15 0x07 0x5B
0x07 0x5B 0xCD 0x15
低地址端存储高位字节,高位在前
四、网络字节序和主机字节序
网络字节序(Network Order):TCP/IP各层协议将字节序定义为Big Endian,因此TCP/IP协议中使用的字节序通常称之为网络字节序。
主机字节序(Host Order):整数在内存中保存的顺序,它遵循Little Endian规则(不一定,要看主机的CPU架构)。所以当两台主机之间要通过TCP/IP协议进行通信的时候就需要调用相应的函数进行主机序列(Little Endian)和网络序(Big Endian)的转换。
如果是做跨平台开发时,双方需要协商好字节序,然后根据程序运行的环境,确定是否需要字节序转换。
例如约定的通讯字节序位Big Endian,默认的windows采用的Little Endian,那收到数据后就需要做转换操作。
五、C#位操作符
这里简单记录一下C#的位操作符,方便以后自己查阅,也方便理解后面的讲解。
1、按位与&
1&0为0;0&0为0;1&1为1。
2、按位或|
1|0为1;0|0为0;1|1为1。
3、按位取反~
~1为0;~0为1。
4、按位异或^
1^1为0;0^0为0;1^0为1。相等得0,相异等1。
5、左移<<
位左移运算,将整个数向左移若干位,左移后空出的部分用0补齐。
6、右移>>
位右移运算,将整个数向右移若干位,右移后空出的部分用0补齐。
六、C#中关于大端和小端的转换
1、重复轮子
usingSystem;
namespaceFramework.NetPackage.Common
{
///
///字节序转换辅助类/// public static classEndian{
public static shortSwapInt16(this shortn)
{
return(short)(((n & 0xff) << 8) | ((n >> 8) & 0xff));
}
public static ushortSwapUInt16(this ushortn)
{
return(ushort)(((n & 0xff) << 8) | ((n >> 8) & 0xff));
}
public static intSwapInt32(this intn)
{
return(int)(((SwapInt16((short)n) & 0xffff) << 0x10) |
(SwapInt16((short)(n >> 0x10)) & 0xffff));
}
public static uintSwapUInt32(this uintn)
{
return(uint)(((SwapUInt16((ushort)n) & 0xffff) << 0x10) |
(SwapUInt16((ushort)(n >> 0x10)) & 0xffff));
}
public static longSwapInt64(this longn)
{
return(long)(((SwapInt32((int)n) & 0xffffffffL) << 0x20) |
(SwapInt32((int)(n >> 0x20)) & 0xffffffffL));
}
public static ulongSwapUInt64(this ulongn)
{
return(ulong)(((SwapUInt32((uint)n) & 0xffffffffL) << 0x20) |
(SwapUInt32((uint)(n >> 0x20)) & 0xffffffffL));
}
}
}
2、BCL库支持的函数
System.Net.IPAddress.HostToNetworkOrder、System.Net.IPAddress.NetworkToHostOrder,这两个函数的内部实现和上面重复轮子原理一模一样。
七、关于负数
在计算机中,负数以其绝对值的补码形式表示,不明白可以查阅九中贴出的相关资源。关于负数的字节序跟一般整数的字节序处理没有任何区别。
八、关于汉字编码以及与字节序的关系
1、对于gb2312、gbk、gb18030、big5,其编码某个汉字产生的字节顺序,由其编码方案本身决定,不受CPU字节序的影响。其实这几种编码的字节序和大端模式的顺序是一致的。
在使用GB2312的程序通常采用EUC储存方法,以便兼容于ASCII。浏览器编码表上的“GB2312”,通常都是指“EUC-CN”表示法。
每个汉字及符号以两个字节来表示。第一个字节称为“高位字节”,第二个字节称为“低位字节”。
“高位字节”使用了0xA1-0xF7(把01-87区的区号加上0xA0),“低位字节”使用了0xA1-0xFE(把01-94加上0xA0)。
由于一级汉字从16区起始,汉字区的“高位字节”的范围是0xB0-0xF7,“低位字节”的范围是0xA1-0xFE,占用的码位是72*94=6768。其中有5个空位是D7FA-D7FE。
例如“啊”字在大多数程序中,会以两个字节,0xB0(第一个字节)0xA1(第二个字节)储存。(与区位码对比:0xB0=0xA0+16,0xA1=0xA0+1)。
2、UTF-8
UTF-8和gb系列编码一样,其编码某个汉字产生的字节顺序,由其编码方案决定,不受CPU字节序的影响。无论一个汉字有多少个字节,它的字节序与编码顺序保持一致。
例如汉字”严”利用utf8编码过程:
1、已知“严”的unicode编码是4E25(100111000100101),根据utf8规则可以得知其utf8编码需要三个字节。
即格式是“1110xxxx 10xxxxxx 10xxxxxx”
第一个字节前三位表示了字符“严”被编码成utf8后的编码长度,有多长,则从左开始填多少个1,如果只有1个字节,则第一个位为0。
对于编码后大于1个字节的符号,第一个字节的第四位为0,其他字节前两位均要求为10。
2、从”严“的最后一个二进制位开始,依次从后向前填入格式中的x,多出的位补0。这样就得到了“严”的utf8编码为“11100100 10111000 10100101”,转换成十六进制就是E4B8A5。
从上述过程可以看到,utf8的字节序已经由其编码方案决定,不受CPU字节序影响。
3、Unicode
Unicode只是一个符号集,它只规定了符号的二进制代码,却没有规定这个二进制代码应该如何存储。所以他没有要求如何存储编码后的字节,也就受CPU字节序的影响。
Unicode的具体实现包括UTF-16、UTF-32(当然也包括UTF-8,但由于其编码方式和编码后的字节序与其他Unicode编码实现有较大区别,所以单独拿出来讲解的)。
4、总结
1、网络通讯
在实际的网络通讯中,网络协议例如TCP是规定网络字节序(Network Order)是大端。而针对汉字具体使用什么编码,通讯双方要么提前约定好,要么就需要在数据包中标识好汉字具体使用的编码。
如果在网络通讯中,涉及例如UTF16这样区分大小端的编码,除非按网络协议要求采用大端模式是,否则也要事先约定好,或者在数据包中标识好使用的字节序模式。
2、文件
文件的也会存储汉字,当然也要进行编码。如果采用UTF-16这样的有字节序模式区分的编码,编码规则要求可以在文件头部的BOM(Byte Order Mark)来标记。如果没有标记,除非事先知道字节序的模式,否则只能大小端都试一遍。
Unicode规范中推荐的标记字节顺序的方法是BOM。BOM不是“Bill Of Material”的BOM表,而是Byte Order Mark。BOM是一个有点小聪明的想法:
在Unicode编码中有一个叫做”ZERO WIDTH NO-BREAK SPACE”的字符,它的编码是FEFF。而FEFF在Unicode中是不存在的字符,所以不应该出现在实际传输中。UCS(Unicode的学名)规范建议我们在传输字节流前,先传输字符“ZERO WIDTH NO-BREAK SPACE”。
这样如果接收者收到FEFF,就表明这个字节流是Big-Endian的;如果收到FFFE,就表明这个字节流是Little-Endian的。因此字符“ZERO WIDTH NO-BREAK SPACE”又被称作BOM。
UTF-8不需要BOM来表明字节顺序,但可以用BOM来表明编码方式。字符“ZERO WIDTH NO-BREAK SPACE”的UTF-8编码是EF BB BF。所以如果接收者收到以EF BB BF开头的字节流,就知道这是UTF-8编码了。
九、参考资源