open cv学习 (二)色彩空间和通道

色彩空间和通道

demo1
import cv2

hsv_image = cv2.imread("./img.png")

cv2.imshow("img", hsv_image)
hsv_image = cv2.cvtColor(hsv_image, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv_image)
cv2.imshow("B", h)
cv2.imshow("G", s)
cv2.imshow("R", v)

cv2.waitKey()
cv2.destroyAllWindows()
demo2
import numpy as np
import cv2
# Gary色彩空间通常是灰度图
# 从BGR色彩空间转换到GRAY色彩空间
image = cv2.imread("./img.png")

cv2.imshow("flower", image)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

cv2.imshow("Gray_image", gray_image)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
import cv2
import numpy as np
# BGR 是基于三基色,HSV是基于色调、饱和度和亮度
# 色调H 是指光的颜色
# 饱和度S是指色彩的深浅
# 亮度V是指光的明暗
# 拆分BGR色彩的三通道
image = cv2.imread("./img.png")
cv2.imshow("img", image)

hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
cv2.imshow("hsv_img", hsv_image)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
import cv2

# 拆分HSV的三通道
bgr_image = cv2.imread("./img.png")

cv2.imshow("img", bgr_image)
b, g, r = cv2.split(bgr_image)
cv2.imshow("B", b)
cv2.imshow("G", g)
cv2.imshow("R", r)

cv2.waitKey()
cv2.destroyAllWindows()
demo5
import cv2

# 合并三通道

img = cv2.imread("./img.png")

b, g, r = cv2.split(img)

img = cv2.merge([b, g, r])

cv2.imshow("myimage", img)

cv2.waitKey()
cv2.destroyAllWindows()
demo6
import cv2

img = cv2.imread("./img.png")

hsv_img = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv_img)
h[:, :] = 180
new_img = cv2.merge([h, s, v])
cv2.imshow("new_img", new_img)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
import cv2

bgr_img = cv2.imread("./img.png")
bgra_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2BGRA)
cv2.imshow("bgr", bgra_img)
b, g, r, a = cv2.split(bgra_img)
a[:, :] = 172
bgra_172 = cv2.merge([b, g, r, a])

a[:, :] = 0

bgra_0 = cv2.merge([b, g, r, a])

cv2.imwrite("./bgr_img.png", bgr_img)
cv2.imwrite("./bgra_172.png", bgra_172)
cv2.imwrite("./bgra_0.png", bgra_0)
cv2.imshow("1", bgra_172)
cv2.imshow("2", bgra_0)
cv2.waitKey()
cv2.destroyAllWindows()

你可能感兴趣的:(学习,opencv,计算机视觉)