强化学习DQN算法和代码

梯度

在训练时,目标网络’(+1, )和预测网络(, )来自同一网络,
但是’(+1, )网络的更新频率会滞后(, )
g r a d = ▽ Q = ▽ θ ( r ( s t , a t ) + γ m a x a t + 1 Q θ ˉ ∗ ( s t + 1 , a t + 1 ) − Q θ ∗ ( s t , a t ) ) grad = \bigtriangledown Q = \bigtriangledown _{\theta } (r(s_{t},a_{t}) + \gamma \underset{a_{t+1}}{max} Q^{*}_{\bar{\theta} } (s_{t+1},a_{t+1}) - Q^{*}_{\theta} (s_{t},a_{t})) grad=Q=θ(r(st,at)+γat+1maxQθˉ(st+1,at+1)Qθ(st,at))

更新梯度 grad:

Q θ ∗ ( s t , a t ) ⟵ Q θ ∗ ( s t , a t ) + η ∗ g r a d Q^{*}_{\theta} (s_{t},a_{t})\longleftarrow Q^{*}_{\theta} (s_{t},a_{t}) + \eta * grad Qθ(st,at)Qθ(st,at)+ηgrad

损失函数:

L = g r a d 2 L = grad^2 L=grad2

dqn.py

其中 gym version = 0.26.2 https://github.com/openai/gym/releases/tag/0.26.2

import collections
import random
import gym,os
import  numpy as np
import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import layers,optimizers,losses


# tf.test.is_gpu_available()
tf.config.list_physical_devices('GPU')

SEED_NUM = 1234
env = gym.make('CartPole-v1')  # 创建游戏环境
# env.seed(1234)
tf.random.set_seed(SEED_NUM)
np.random.seed(SEED_NUM)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

# Hyperparameters
learning_rate = 0.0002
gamma = 0.99
buffer_limit = 50000
batch_size = 32


class ReplayBuffer():
    # 经验回放池
    def __init__(self):
        # 双向队列
        self.buffer = collections.deque(maxlen=buffer_limit)

    def put(self, transition):
        self.buffer.append(transition)

    def sample(self, n):
        # 从回放池采样n个5元组
        mini_batch = random.sample(self.buffer, n)
        s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], []
        # 按类别进行整理
        for transition in mini_batch:
            s, a, r, s_prime, done_mask = transition
            s_lst.append(s)
            a_lst.append([a])
            r_lst.append([r])
            s_prime_lst.append(s_prime)
            done_mask_lst.append([done_mask])
        # 转换成Tensor
        return tf.constant(s_lst, dtype=tf.float32),\
                      tf.constant(a_lst, dtype=tf.int32), \
                      tf.constant(r_lst, dtype=tf.float32), \
                      tf.constant(s_prime_lst, dtype=tf.float32), \
                      tf.constant(done_mask_lst, dtype=tf.float32)


    def size(self):
        return len(self.buffer)


class Qnet(keras.Model):
    """ 创建Q网络,输入为状态向量,输出为动作的Q值 """
    def __init__(self):
        super(Qnet, self).__init__()
        self.fc1 = layers.Dense(256, kernel_initializer='he_normal')
        self.fc2 = layers.Dense(256, kernel_initializer='he_normal')
        self.fc3 = layers.Dense(2, kernel_initializer='he_normal')

    def call(self, x, training=None):
        x = tf.nn.relu(self.fc1(x))
        x = tf.nn.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def sample_action(self, s, epsilon):
        # 送入状态向量,获取策略: [4]
        s = tf.constant(s, dtype=tf.float32)
        # s: [4] => [1,4]
        s = tf.expand_dims(s, axis=0)
        out = self(s)[0]
        coin = random.random()
        # 策略改进:e-贪心方式
        if coin < epsilon:
            # epsilon大的概率随机选取
            return random.randint(0, 1)
        else:  # 选择Q值最大的动作
            return int(tf.argmax(out))


def train(q, q_target, memory, optimizer):
    """ 通过Q网络和影子网络来构造贝尔曼方程的误差 , 并只更新Q网络, 影子网络的更新会滞后Q网络print_interval=20回合 """
    huber = losses.Huber()
    for i in range(10):  # 训练10次
        # 从缓冲池采样batch_size
        s, a, r, s_prime, done_mask = memory.sample(batch_size)
        with tf.GradientTape() as tape:
            q_out = q(s)  # 得到Q(s,a)的分布 , shape=(batch_size,4)
            # 由于TF的gather_nd与pytorch的gather功能不一样,需要构造
            # gather_nd需要的坐标参数,indices:[b, 2]
            # pi_a = pi.gather(1, a) # pytorch只需要一行即可实现

            indices = tf.expand_dims(tf.range(a.shape[0]), axis=1)#shape=(batch_size,1)
            indices = tf.concat([indices, a], axis=1) #shape=(batch_size,2),第1列是索引indices,第2列是a,a∈[0,1]也相当于索引
            q_a = tf.gather_nd(q_out, indices) # q_out中按照indices索引取出动作的概率值Q(s,a_t), shape=(batch_size,)
            q_a = tf.expand_dims(q_a, axis=1) # shape=(batch_size,1)

            # 得到Q(s'_t+1,a)的最大值,它来自影子网络! [batch_size,4]=>[batch_size,2]=>[batch_size,1]
            max_q_prime = tf.reduce_max(q_target(s_prime),axis=1,keepdims=True)
            # 构造Q(s',a_t)的目标值,来自贝尔曼方程
            target = r + gamma * max_q_prime * done_mask
            # 计算Q(s,a_t)与Q(s',a_t)目标值的误差,即是与print_interval=20回合之前对比
            loss = huber(q_a, target)
        # 更新网络,使得Q(s,a_t)估计符合贝尔曼方程
        grads = tape.gradient(loss, q.trainable_variables)
        # for p in grads:
        #     print(tf.norm(p))
        # print(grads)
        optimizer.apply_gradients(zip(grads, q.trainable_variables))


def main():
    env = gym.make('CartPole-v1')  # 创建环境
    q = Qnet()  # 创建Q网络
    q_target = Qnet()  # 创建影子网络
    q.build(input_shape=(2,4))
    q_target.build(input_shape=(2,4))
    for src, dest in zip(q.variables, q_target.variables):
        dest.assign(src) # 影子网络权值来自Q
    memory = ReplayBuffer()  # 创建回放池

    print_interval = 20
    score = 0.0
    optimizer = optimizers.Adam(lr=learning_rate)

    for n_epi in range(10000):  # 训练次数
        # epsilon概率也会8%到1%衰减,越到后面越使用Q值最大的动作
        epsilon = max(0.01, 0.08 - 0.01 * (n_epi / 200))
        s,info = env.reset(seed=SEED_NUM)  # 复位环境
        for t in range(600):  # 一个回合最大时间戳
            # if n_epi>1000:
            #     env.render()
            # 根据当前Q网络提取策略,并改进策略
            a = q.sample_action(s, epsilon)
            # 使用改进的策略与环境交互
            s_prime, r, done,truncated, info = env.step(a)
            done_mask = 0.0 if done else 1.0  # 结束标志掩码
            # 保存5元组
            memory.put((s, a, r / 100.0, s_prime, done_mask))
            s = s_prime  # 刷新状态
            score += r  # 记录总回报
            if done:  # 回合结束
                break

        # 每回合判断缓冲池大于2000训练,更新Q网络
        if memory.size() > 2000:  
            # print(f"episode : {n_epi} , train Qnet ")
            train(q, q_target, memory, optimizer)

        # q_target参数更新滞后 20 回合
        # 每20回合更新影子网络,打印数据
        if n_epi % print_interval == 0 and n_epi != 0:
            for src, dest in zip(q.variables, q_target.variables):
                dest.assign(src)  # 影子网络权值来自Q
            print("# of episode :{}, avg score : {:.1f}, buffer size : {}, " \
                  "epsilon : {:.1f}%" \
                  .format(n_epi, score / print_interval, memory.size(), epsilon * 100))
            score = 0.0
    env.close()


if __name__ == '__main__':
    main()

你可能感兴趣的:(AI,算法,tensorflow,人工智能)