雪崩问题
微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩
解决雪崩问题的常见方式有四种:
Sentinel是阿里巴巴开源的一款微服务流量控制组件。
微服务整合Sentinel
1.引入sentinel依赖:
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-sentinelartifactId>
dependency>
2.配置控制台地址:
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8080 # sentinel控制台地址
3.访问微服务的任意端点,触发sentinel监控
簇点链路
簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint: controller中的每一个方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。
需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5。然后利用jemeter测试。
1.设置流控规则:
2.jemeter测试:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-swU5G1Qz-1692263317692)(C:\Users\captaindeng\AppData\Roaming\Typora\typora-user-images\image-20230813163248788.png)]
在添加限流规则时,点击高级选项,可以选择三种流控模式:
当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。
需求:
满足下面条件可以使用关联模式:
链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
例如有两条请求链路:
如果只希望统计从/test2进入到/common的请求,则可以这样配置:
需求:
有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。
步骤:
Sentinel默认只标记Controller中的方法为资源,如果要标记其它方法,需要利用@SentinelResource注解
@SentinelResource("goods")
public void queryGoods(){
System.err.println("查询商品");
}
Sentinel默认会将Controller方法做context整合,导致链路模式的流控失效,需要修改application.yml,添加配置:
spring:
cloud:
sentinel:
web-context-unify: false # 关闭context整合
流控效果是指请求达到流控阈值时应该采取的措施,包括三种:
warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 threshold / coldFactor,持续指定时长后,逐渐提高到threshold值。而coldFactor的默认值是3.
例如,我设置QPS的threshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.
案例:需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒
排队等待是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。
例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s
之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。
在热点参数限流的高级选项中,可以对部分参数设置例外配置:
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:
案例:给/order/{orderId}这个资源添加热点参数限流,规则如下:
热点参数限流对默认的SpringMVC资源无效,只对添加@SentinelResource注解的方法产生效果
@SentinelResource("hot")
@GetMapping("{orderId}")
public Order queryOrderByUserId(@PathVariable("orderId") Long orderId) {
// 根据id查询订单并返回
return orderService.queryOrderById(orderId);
}
虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。
不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。
SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。
1.修改OrderService的application.yml文件,开启Feign的Sentinel功能
feign:
sentinel:
enabled: true # 开启Feign的Sentinel功能
2.给FeignClient编写失败后的降级逻辑
步骤一:在feing-api项目的clients.fallback中定义类,实现FallbackFactory:
@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
@Override
public UserClient create(Throwable throwable) {
return new UserClient() {
@Override
public User findById(Long id) {
log.error("查询用户异常", throwable);
return new User();
}
};
}
}
步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:
public class DefaultFeignConfiguration {
@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
return new UserClientFallbackFactory();
}
}
步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:
@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {
@GetMapping("/user/{id}")
User findById(@PathVariable("id") Long id);
}
线程隔离有两种方式实现:
线程池隔离
信号量隔离
在添加限流规则时,可以选择两种阈值类型:
案例:给 UserClient的查询用户接口设置流控规则,线程数不能超过 2
熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。
断路器熔断策略有三种:慢调用、异常比例、异常数
解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
案例:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s
提示:为了触发慢调用规则,我们需要修改UserService中的业务,增加业务耗时:
异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。例如:
案例:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s
提示:为了触发异常统计,我们需要修改UserService中的业务,抛出异常:
授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式
Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。
从request中获取一个名为origin的请求头,作为origin的值:
在order-service中创建sentinel包
package cn.itcast.order.sentinel;
@Component
public class HeaderOriginParser implements RequestOriginParser {
@Override
public String parseOrigin(HttpServletRequest request) {
// 1.获取请求头
String origin = request.getHeader("origin");
// 2.非空判断
if (StringUtils.isEmpty(origin)) {
origin = "blank";
}
return origin;
}
}
在gateway服务中,利用网关的过滤器添加名为gateway的origin头:
spring:
gateway:
default-filters:
- AddRequestHeader=Truth, ABCDEFGHIJKLMN
- AddRequestHeader=origin, gateway # 添加名为origin的请求头,值为gateway
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OUTxGg72-1692263317693)(C:\Users\captaindeng\AppData\Roaming\Typora\typora-user-images\image-20230814170236972.png)]
默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:
BlockException包含很多个子类,分别对应不同的场景:
异常 | 说明 |
---|---|
FlowException | 限流异常 |
ParamFlowException | 热点参数限流的异常 |
DegradeException | 降级异常 |
AuthorityException | 授权规则异常 |
SystemBlockException | 系统规则异常 |
在order-service的sentinel包中定义类,实现BlockExceptionHandler接口:
package cn.itcast.order.sentinel;
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
@Override
public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
String msg = "未知异常";
int status = 429;
if (e instanceof FlowException){
msg = "请求被限流";
} else if (e instanceof ParamFlowException) {
msg = "请求被热点参数限流";
} else if (e instanceof DegradeException) {
msg = "请求被降级";
} else if (e instanceof AuthorityException) {
msg = "没有权限访问";
status = 401;
}
response.setContentType("application/json;charset=utf-8");
response.setStatus(status);
response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
}
}
Sentinel的控制台规则管理有三种模式: