原始笔记链接:https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486680&idx=1&sn=edf41d4f95395d7294bc958ea68d3a68&chksm=cf51be21f826373790bc6d79bcea6eb2cb3d09bb1860bba0af0fd5e60c448ca006976503e460#rd
↑ \uparrow ↑点击上述链接即可阅读全文
毫米波雷达成像论文阅读笔记: IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar
背景
方法 :提出 Compressive Implicit Radar (CoIR)
目标: high accuracy sparse radar imaging using a single radar chip
Leverages : CNN decoder and compressed sensing
贡献:
✅ 设计稀疏线阵: with 5.5x fewer antennas than conventional MIMO arrays
✅ 提出ComDecoder :a fully convolutional implicit neural network architecture
✅ 证明了CoIR的有效性 :in both simulation and real-world experiments,且 不需要 auxiliary sensors
实验结果
基于光学的Depth imaging及其缺点
毫米波雷达成像的优点和挑战
已有提高角分辨率的工作和缺陷
The proposed CoIR:
Key observation:
方法
贡献
提高角度分辨率的方法及其缺点
proposed CoIR 的不同:
仅使用 single chip sparse MIMO array
使用 未经训练 的 神经网络
✅ 无需训练数据
稀疏雷达成像技术:
1 Sparse aperture array designs
使用欠奈奎斯特采样 减少 天线数
优化方法:
✅ Convex relaxations
✅ Prior knowledge of number of reflectors
2 Sparse reconstruction methods
Super-resolution algorithms
✅ MUSIC, ESPRIT
✅ Require incoherent signals, known number of targets
Compressed sensing (CS) optimization:
✅ 使用稀疏先验,如 spatial sparsity, TV norm
✅ Challenging to design priors, scene dependent
proposed CoIR 的不同:
Sparse array design
inspired by prior work but modified due to hardware constraints
Uses untrained neural network
as complex prior instead of handcrafted prior
✅ Neural network prior shows affinity for natural features and noise robustness
两类INR architectures:
1 Convolutional methods ,适合:
2 Coordinate-based MLP methods ,适合:
CoIR中的ComDecoder:
属于 Convolutional methods
tailored for sparse radar imaging
Key properties:
Convolutional operations capture local spatial information
Upsampling induces notion of resolution per layer
Residual blocks smooth optimization and propagate information between layers
Together these inductive biases improve performance on sparse radar imaging
Differences from prior works:
✅ CoIR uses untrained INR as complex prior for sparse radar imaging
✅ Prior works use INR for natural images or other imaging modalities
发射信号模型
场景模型 (离散反射体分布)
回波信号模型
Compact matrix form
z = F ( x ‾ ) + w z = F(\overline{x}) + w z=F(x)+w
F F F: 2D FFT
Goal: recover x ‾ \overline{x} x from under-sampled measurements z z z
目标 :
Measurements :
z = M ⊙ F ( x ‾ ) + w z = M\odot F(\overline{x}) + w z=M⊙F(x)+w
M M M: binary mask implementing under-sampling
w w w: noise
困难 :
解决方法
Optimize weights of untrained deep CNN G ( C ; p ) G(C;p) G(C;p) to solve inverse problem
✅ G G G: untrained CNN,
✅ C C C: fixed noise input,
✅ p p p: CNN parameters
Optimization objective:
p ^ = arg min p ∣ ∣ z − M ⊙ F ( G ( C ; p ) ) ∣ ∣ 2 + λ L ∣ ∣ G ( C ; p ) ∣ ∣ 1 \hat{p} = \argmin_p ||z - M\odot F(G(C;p))||_2 + \lambda_L||G(C;p)||_1 p^=argminp∣∣z−M⊙F(G(C;p))∣∣2+λL∣∣G(C;p)∣∣1
λ L \lambda_L λL: sparsity regularization strength
Key observation:
INR provides inductive bias towards natural solutions for imaging inverse problems
优点 :
CNN architecture has high impedance to noise
Learned solution balances fitting salient features and suppressing artifacts
提出 ComDecoder:convolutional decoder architecture
ComDecoder :
网络结构 :
超参数 :
优化过程 :
优点 :
7个baselines: Compared CoIR against several untrained methods
1 Delay-and-Sum (DAS)
2 Sparse DAS
3 Gradient Descent with L1 Regularization (GD+L1 Reg)
4 Implicit Neural Representations:
4.1 INR-ReLU
✅ MLP-based, uses Fourier feature encoding
4.2 SIREN
✅ MLP-based, uses sinusoidal activation functions
5 Deep Image Prior (DIP)
6 DeepDecoder
7 ConvDecoder
在仿真数据上评估所提出的CoIR
仿真数据生成:
评估标准:
实验:
1 Vary SNR from 35dB to 11dB
✅ ComDecoder gave superior PSNR over all methods at all SNRs
✅ ComDecoder and DIP gave comparable SSIM
2 Visualize reconstructions at 19dB SNR
✅ ComDecoder gave most accurate recovery of extended reflectors
✅ Other CNN methods also improved over Sparse DAS
✅ SIREN struggled to distinguish clutter and true reflectors
3 Additional analyses:
✅ Compared different CNN decoder architectures
✅ Evaluated computational complexity (in supplementary)
总结:
在真实采集的Coloradar dataset上评估所有方法
Radar system:
77 GHz FMCW with 1.282 GHz bandwidth
86λ/2 uniform linear array
Metrics :
Experiments :
1 不同场景下的重建效果
✅ ComDecoder accurately recovered dominant features
✅ DIP also performed well but more artifacts than ComDecoder
2 Evaluate 鲁棒性 across multiple outdoor scenes
✅ ComDecoder gave high fidelity reconstructions closest to DAS
✅ SIREN fit strong reflectors but also artifacts
✅ GD+L1 located dominant reflectors but artifacts remained
✅ DIP performed well but more artifacts than ComDecoder
Limitations
Future work
Proposed CoIR
1 Designed sparse linear array with 5.5x fewer antennas
2 Proposed convolutional decoder architecture ComDecoder
3 Demonstrated superior performance on simulated and real mmWave radar data