Netty学习(四)

文章目录

  • 四. 优化与源码
    • 1. 优化
      • 1.1 扩展序列化算法
        • jdk序列化与反序列化
        • Serializer & Algorithm
          • Config
            • application.properties
          • MessageCodecSharable
          • Message(抽象类)
        • 测试
          • 序列化测试
          • 反序列化测试
      • 1.2 参数调优
        • 1)CONNECT_TIMEOUT_MILLIS
        • 2)SO_BACKLOG
          • 三次握手与accept
          • 课堂测试
            • TestBacklogServer
            • TestBacklogClient
            • debug的位置
            • 报错
          • 笔记测试
        • 3)ulimit -n
        • 4)TCP_NODELAY
        • 5)SO_SNDBUF & SO_RCVBUF
        • 6)ALLOCATOR
          • ByteBufUtil
          • 测试
            • TestByteBuf
            • TestByteBufClient
            • 测试结果
        • 7)RCVBUF_ALLOCATOR
          • 测试
          • 源码要点
      • 1.3 RPC 框架
        • 1)准备工作
          • 修改Message
          • RpcRequestMessage
          • RpcResponseMessage
          • RpcServer服务器架子
          • RpcClient客户端架子
          • ServicesFactory
        • 2)服务器 handler
          • RpcRequestMessageHandler
        • 3)RpcClient第一版
        • 4)客户端 handler 第一版
          • ==流程分析==
          • Gson问题
        • 5)RpcClientManager
          • SequenceIdGenerator
          • ==流程分析==
        • 6)RpcResponseMessageHandler
    • 2. 源码分析
      • 2.1 启动剖析
      • 2.2 NioEventLoop 剖析
        • 注意
      • 2.3 accept 剖析
      • 2.4 read 剖析

四. 优化与源码

1. 优化

1.1 扩展序列化算法

序列化,反序列化主要用在消息正文的转换上

  • 序列化时,需要将 Java 对象变为要传输的数据(可以是 byte[],或 json 等,最终都需要变成 byte[])
  • 反序列化时,需要将传入的正文数据还原成 Java 对象,便于处理

jdk序列化与反序列化

目前的代码仅支持 Java 自带的序列化,反序列化机制,核心代码如下

// 反序列化(将 字节数组 转换为 java对象, jdk反序列化不需要提供类型信息)
byte[] body = new byte[bodyLength];
byteBuf.readBytes(body);
ObjectInputStream in = new ObjectInputStream(new ByteArrayInputStream(body));
Message message = (Message) in.readObject();
message.setSequenceId(sequenceId);

// 序列化(将 java对象 转换为 字节数组)
ByteArrayOutputStream out = new ByteArrayOutputStream();
new ObjectOutputStream(out).writeObject(message);
byte[] bytes = out.toByteArray();

Serializer & Algorithm

  • 为了支持更多序列化算法,抽象一个 Serializer 接口
  • 提供 Serializer 接口 两个实现,我这里直接将实现加入了枚举类 Serializer.Algorithm 中(此Algorithm枚举类写在Serializer接口中,作为Serializer接口类中的成员内部类)
public interface Serializer {

    // 反序列化方法
    <T> T deserialize(Class<T> clazz, byte[] bytes);

    // 序列化方法
    <T> byte[] serialize(T object);
    
    enum Algorithm implements Serializer {
    
        // 枚举类特点
        //  1. 如下枚举类对象因为实现了Serializer接口, 因此, 须实现serialize方法 & deserialize方法
        //  2. 枚举类中定义的枚举对象有特定的顺序, 枚举类对象调用ordinal()方法可获取到枚举类对象的顺序值
        //                                          (顺序值从0开始)
        //  3. 调用 枚举类.valueOf(枚举类对象字符串形式), 可获取到对应的枚举类对象
        //                                          (如Serializer.Algorithm.valueOf(Java))
        //  4. 调用 枚举类.values(), 可获取到所有的枚举类对象的数组

        // Java 实现
        Java {

            @Override
            public <T> T deserialize(Class<T> clazz, byte[] bytes) {

                try {

                    ObjectInputStream in = new ObjectInputStream(new ByteArrayInputStream(bytes));

                    Object object = in.readObject();

                    return (T) object;

                } catch (IOException | ClassNotFoundException e) {
                    throw new RuntimeException("SerializerAlgorithm.Java 反序列化错误", e);
                }
            }

            @Override
            public <T> byte[] serialize(T object) {

                try {

                    ByteArrayOutputStream out = new ByteArrayOutputStream();

                    new ObjectOutputStream(out).writeObject(object);

                    return out.toByteArray();

                } catch (IOException e) {
                    throw new RuntimeException("SerializerAlgorithm.Java 序列化错误", e);
                }
            }
        }, 

        // Json 实现(引入了 Gson 依赖)
        Json {

            @Override
            public <T> T deserialize(Class<T> clazz, byte[] bytes) {

                // Gson反序列化, 需要提供具体的反序列化类
                return new Gson().fromJson(new String(bytes, StandardCharsets.UTF_8), clazz);
            }

            @Override
            public <T> byte[] serialize(T object) {

                // 指定json字符串转为字节数组时(使用Gson), 所使用的编码集
                return new Gson().toJson(object).getBytes(StandardCharsets.UTF_8);
            }
        };

    }

}
Config

增加配置类和配置文件,将序列化算法配置到类路径下的application.properties文件中

public abstract class Config {
    
    static Properties properties;
    
    static {
        
        /* 加载类路径下的application.properties文件 */
        try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {
            
            properties = new Properties();
            
            properties.load(in);
            
        } catch (IOException e) {
            throw new ExceptionInInitializerError(e);
        }
        
    }
    
    // 读取配置文件中 server.port
    public static int getServerPort() {
        
        String value = properties.getProperty("server.port");
        
        if(value == null) {
            
            return 8080;
            
        } else {
            
            return Integer.parseInt(value);
        }
    }
    
    // 读取配置文件中 serializer.algorithm
    public static Serializer.Algorithm getSerializerAlgorithm() {
        
        String value = properties.getProperty("serializer.algorithm");
        
        if(value == null) {
            
            // 默认使用jdk序列化
            return Serializer.Algorithm.Java;
            
        } else {
            
            // 传入枚举类字面形式字符串作为参数, 以返回对应的枚举类对象, 可配置为 Java 或 Gson
            return Serializer.Algorithm.valueOf(value);
        }
    }
}
application.properties

配置文件

# 配置序列化算法, 配置的值就是枚举类对象的字面形式字符串
serializer.algorithm=Json
MessageCodecSharable

修改编解码器

/**
 * 必须和 LengthFieldBasedFrameDecoder 一起使用,确保接到的 ByteBuf 消息是完整的
 */
public class MessageCodecSharable extends MessageToMessageCodec<ByteBuf, Message> {
    
    @Override
    public void encode(ChannelHandlerContext ctx, 
                       Message msg, 
                       List<Object> outList) throws Exception {
        
        ByteBuf out = ctx.alloc().buffer();
        
        // 1. 4 字节的魔数
        out.writeBytes(new byte[]{1, 2, 3, 4});
        
        // 2. 1 字节的版本,
        out.writeByte(1);
        
        // 3. 1 字节的序列化方式 jdk 0 , json 1
        //(获取配置文件中的序列化对象 的 索引)
        out.writeByte(Config.getSerializerAlgorithm().ordinal());
        
        // 4. 1 字节的指令类型
        out.writeByte(msg.getMessageType());
        
        // 5. 4 个字节
        out.writeInt(msg.getSequenceId());
        
        // 无意义,对齐填充
        out.writeByte(0xff);
        
        // 6. 获取内容的字节数组
        //(使用配置文件指定的算法 将 java对象 转换为 字节数组)
        byte[] bytes = Config.getSerializerAlgorithm().serialize(msg);
        
        // 7. 长度
        out.writeInt(bytes.length);
        
        // 8. 写入内容
        out.writeBytes(bytes);
        
        outList.add(out);
    }

    @Override
    protected void decode(ChannelHandlerContext ctx,
                          ByteBuf in, 
                          List<Object> out) throws Exception {
        
        int magicNum = in.readInt();
        
        byte version = in.readByte();
        
        // 获取待解码的数据中 指定的序列化算法 标识
        byte serializerAlgorithm = in.readByte(); // 0 或 1
        
        byte messageType = in.readByte(); // 0,1,2...
        
        int sequenceId = in.readInt();
        
        in.readByte();
        
        int length = in.readInt();
        
        // 这个长度是通过解析ByteBuf字节数据消息来的
        byte[] bytes = new byte[length];
        
        in.readBytes(bytes, 0, length);
        
        // 确定具体消息类型
        Class<? extends Message> messageClass = Message.getMessageClass(messageType);
        
        // 获取待解码的数据反序列化算法(枚举类的顺序, 从0开始)
        Serializer.Algorithm algorithm = Serializer.Algorithm.values()[serializerAlgorithm];
        
        // 使用指定的反序列化算法
        Message message = algorithm.deserialize(messageClass, bytes);

        out.add(message);
    }
}
Message(抽象类)

其中确定具体消息类型,可以根据 消息类型字节 获取到对应的 消息 class

(下面就是为了让Gson能够根据消息类型 获取到 具体的Message实现类,

​ 从而 让Gson能够把Json字符串编码得到的字节数组转为 具体的Message对象,

​ 而不能简单的指定Message这个抽象类作为Gson的反序列化目标类)

@Data
public abstract class Message implements Serializable {

    /**
     * 根据消息类型字节,获得对应的消息 class
     * @param messageType 消息类型字节
     * @return 消息 class
     */
    public static Class<? extends Message> getMessageClass(int messageType) {
        return messageClasses.get(messageType);
    }

    private int sequenceId;

    private int messageType;

    public abstract int getMessageType();

    public static final int LoginRequestMessage = 0;
    public static final int LoginResponseMessage = 1;
    public static final int ChatRequestMessage = 2;
    public static final int ChatResponseMessage = 3;
    public static final int GroupCreateRequestMessage = 4;
    public static final int GroupCreateResponseMessage = 5;
    public static final int GroupJoinRequestMessage = 6;
    public static final int GroupJoinResponseMessage = 7;
    public static final int GroupQuitRequestMessage = 8;
    public static final int GroupQuitResponseMessage = 9;
    public static final int GroupChatRequestMessage = 10;
    public static final int GroupChatResponseMessage = 11;
    public static final int GroupMembersRequestMessage = 12;
    public static final int GroupMembersResponseMessage = 13;
    public static final int PingMessage = 14;
    public static final int PongMessage = 15;
    
    private static final Map<Integer, Class<? extends Message>> messageClasses = new HashMap<>();

    static {
        messageClasses.put(LoginRequestMessage, LoginRequestMessage.class);
        messageClasses.put(LoginResponseMessage, LoginResponseMessage.class);
        messageClasses.put(ChatRequestMessage, ChatRequestMessage.class);
        messageClasses.put(ChatResponseMessage, ChatResponseMessage.class);
        messageClasses.put(GroupCreateRequestMessage, GroupCreateRequestMessage.class);
        messageClasses.put(GroupCreateResponseMessage, GroupCreateResponseMessage.class);
        messageClasses.put(GroupJoinRequestMessage, GroupJoinRequestMessage.class);
        messageClasses.put(GroupJoinResponseMessage, GroupJoinResponseMessage.class);
        messageClasses.put(GroupQuitRequestMessage, GroupQuitRequestMessage.class);
        messageClasses.put(GroupQuitResponseMessage, GroupQuitResponseMessage.class);
        messageClasses.put(GroupChatRequestMessage, GroupChatRequestMessage.class);
        messageClasses.put(GroupChatResponseMessage, GroupChatResponseMessage.class);
        messageClasses.put(GroupMembersRequestMessage, GroupMembersRequestMessage.class);
        messageClasses.put(GroupMembersResponseMessage, GroupMembersResponseMessage.class);
    }
}

测试

序列化测试

将application.properties的序列化算法分别配置为Java、Json

public class TestSerializer {

    public static void main(String[] args)  {

        MessageCodecSharable CODEC = new MessageCodecSharable();

        LoggingHandler LOGGING = new LoggingHandler();

		/* 在自定义编解码器的前后, 各配置1个日志处理器 */
        EmbeddedChannel channel = new EmbeddedChannel(LOGGING, CODEC, LOGGING);

        LoginRequestMessage message = new LoginRequestMessage("zhangsan", "123");
        
        /* 写 1个 出站消息, 将会经过 编码处理 */
        channel.writeOutbound(message);
    }

}

从下面的日志输出可以看到,使用Json的方式,所传输的数据更小,并且易读

使用java序列化日志输出

18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: 224B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 00 00 00 00 00 00 ff 00 00 00 d0 |................|
|00000010| ac ed 00 05 73 72 00 2a 63 6f 6d 2e 7a 7a 68 75 |....sr.*com.zzhu|
|00000020| 61 2e 63 68 61 74 2e 6d 65 73 73 61 67 65 2e 4c |a.chat.message.L|
|00000030| 6f 67 69 6e 52 65 71 75 65 73 74 4d 65 73 73 61 |oginRequestMessa|
|00000040| 67 65 62 ad c8 8d f0 30 e5 ae 02 00 02 4c 00 08 |geb....0.....L..|
|00000050| 70 61 73 73 77 6f 72 64 74 00 12 4c 6a 61 76 61 |passwordt..Ljava|
|00000060| 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 00 08 |/lang/String;L..|
|00000070| 75 73 65 72 6e 61 6d 65 71 00 7e 00 01 78 72 00 |usernameq.~..xr.|
|00000080| 1e 63 6f 6d 2e 7a 7a 68 75 61 2e 63 68 61 74 2e |.com.zzhua.chat.|
|00000090| 6d 65 73 73 61 67 65 2e 4d 65 73 73 61 67 65 c3 |message.Message.|
|000000a0| fd 8f 9c bb 24 c3 cd 02 00 02 49 00 0b 6d 65 73 |....$.....I..mes|
|000000b0| 73 61 67 65 54 79 70 65 49 00 0a 73 65 71 75 65 |sageTypeI..seque|
|000000c0| 6e 63 65 49 64 78 70 00 00 00 00 00 00 00 00 74 |nceIdxp........t|
|000000d0| 00 03 31 32 33 74 00 08 7a 68 61 6e 67 73 61 6e |..123t..zhangsan|
+--------+-------------------------------------------------+----------------+
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH
18:10:29 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH

使用Json序列化日志输出

18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] WRITE: 87B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 01 00 00 00 00 00 ff 00 00 00 47 |...............G|
|00000010| 7b 22 75 73 65 72 6e 61 6d 65 22 3a 22 7a 68 61 |{"username":"zha|
|00000020| 6e 67 73 61 6e 22 2c 22 70 61 73 73 77 6f 72 64 |ngsan","password|
|00000030| 22 3a 22 31 32 33 22 2c 22 73 65 71 75 65 6e 63 |":"123","sequenc|
|00000040| 65 49 64 22 3a 30 2c 22 6d 65 73 73 61 67 65 54 |eId":0,"messageT|
|00000050| 79 70 65 22 3a 30 7d                            |ype":0}         |
+--------+-------------------------------------------------+----------------+
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH
18:10:47 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] FLUSH
反序列化测试
public class TestSerializer {

    public static void main(String[] args)  {

        MessageCodecSharable CODEC = new MessageCodecSharable();

        LoggingHandler LOGGING = new LoggingHandler();

        /* 在自定义编解码器的前后, 各配置1个日志处理器 */
        EmbeddedChannel channel = new EmbeddedChannel(LOGGING, CODEC, LOGGING);

        LoginRequestMessage message = new LoginRequestMessage("zhangsan", "123");

        /* 先使用自定义的方法, 把消息写到ByteBuf中 */
        ByteBuf buf = messageToByteBuf(message);
        
        /* 写入1个入站消息, 将会经过解码处理 */
        channel.writeInbound(buf);
    }

    public static ByteBuf messageToByteBuf(Message msg) {
        int algorithm = Config.getSerializerAlgorithm().ordinal();
        ByteBuf out = ByteBufAllocator.DEFAULT.buffer();
        out.writeBytes(new byte[]{1, 2, 3, 4});
        out.writeByte(1);
        out.writeByte(algorithm);
        out.writeByte(msg.getMessageType());
        out.writeInt(msg.getSequenceId());
        out.writeByte(0xff);
        byte[] bytes = Serializer.Algorithm.values()[algorithm].serialize(msg);
        out.writeInt(bytes.length);
        out.writeBytes(bytes);
        return out;
    }
}

java反序列化日志输出

18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: 224B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 00 00 00 00 00 00 ff 00 00 00 d0 |................|
|00000010| ac ed 00 05 73 72 00 2a 63 6f 6d 2e 7a 7a 68 75 |....sr.*com.zzhu|
|00000020| 61 2e 63 68 61 74 2e 6d 65 73 73 61 67 65 2e 4c |a.chat.message.L|
|00000030| 6f 67 69 6e 52 65 71 75 65 73 74 4d 65 73 73 61 |oginRequestMessa|
|00000040| 67 65 62 ad c8 8d f0 30 e5 ae 02 00 02 4c 00 08 |geb....0.....L..|
|00000050| 70 61 73 73 77 6f 72 64 74 00 12 4c 6a 61 76 61 |passwordt..Ljava|
|00000060| 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 00 08 |/lang/String;L..|
|00000070| 75 73 65 72 6e 61 6d 65 71 00 7e 00 01 78 72 00 |usernameq.~..xr.|
|00000080| 1e 63 6f 6d 2e 7a 7a 68 75 61 2e 63 68 61 74 2e |.com.zzhua.chat.|
|00000090| 6d 65 73 73 61 67 65 2e 4d 65 73 73 61 67 65 c3 |message.Message.|
|000000a0| fd 8f 9c bb 24 c3 cd 02 00 02 49 00 0b 6d 65 73 |....$.....I..mes|
|000000b0| 73 61 67 65 54 79 70 65 49 00 0a 73 65 71 75 65 |sageTypeI..seque|
|000000c0| 6e 63 65 49 64 78 70 00 00 00 00 00 00 00 00 74 |nceIdxp........t|
|000000d0| 00 03 31 32 33 74 00 08 7a 68 61 6e 67 73 61 6e |..123t..zhangsan|
+--------+-------------------------------------------------+----------------+
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE
18:13:24 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE

json反序列化日志输出

18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] REGISTERED
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] ACTIVE
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: 87B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 01 01 00 00 00 00 00 ff 00 00 00 47 |...............G|
|00000010| 7b 22 75 73 65 72 6e 61 6d 65 22 3a 22 7a 68 61 |{"username":"zha|
|00000020| 6e 67 73 61 6e 22 2c 22 70 61 73 73 77 6f 72 64 |ngsan","password|
|00000030| 22 3a 22 31 32 33 22 2c 22 73 65 71 75 65 6e 63 |":"123","sequenc|
|00000040| 65 49 64 22 3a 30 2c 22 6d 65 73 73 61 67 65 54 |eId":0,"messageT|
|00000050| 79 70 65 22 3a 30 7d                            |ype":0}         |
+--------+-------------------------------------------------+----------------+
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ: LoginRequestMessage(super=Message(sequenceId=0, messageType=0), username=zhangsan, password=123)
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE
18:12:58 [DEBUG] [main] i.n.h.l.LoggingHandler - [id: 0xembedded, L:embedded - R:embedded] READ COMPLETE

1.2 参数调优

1)CONNECT_TIMEOUT_MILLIS

  • 属于 SocketChannal 参数

  • 用在客户端建立连接时,如果在指定毫秒内无法连接,会抛出 timeout 异常

  • SO_TIMEOUT 主要用在阻塞 IO(即BIO),阻塞 IO 中 accept,read 等都是无限等待的,如果不希望永远阻塞,使用它调整超时时间(这就是SO_TIMEOUT与CONNECT_TIMEOUT_MILLIS的区别)

@Slf4j
public class TestConnectionTimeout {
    
    public static void main(String[] args) {

        // 1. 客户端通过 new Bootstrap().option() 方法配置参数 给 SocketChannel 配置参数

        // 2. 服务器端
        // new ServerBootstrap().option()      // 是给 ServerSocketChannel 配置参数
        // new ServerBootstrap().childOption() // 是给 SocketChannel 配置参数

        NioEventLoopGroup group = new NioEventLoopGroup();

        try {

            Bootstrap bootstrap = new Bootstrap()
                
                    .group(group)
                
                    .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 1000)
                
                    .channel(NioSocketChannel.class)
                
                    .handler(new LoggingHandler());
            
            // 此处仅发出建立连接的命令, 而不会等建立连接后才返回,
            ChannelFuture future = bootstrap.connect("127.0.0.1", 8080); 
            
            // 调用future.sync()可以等到建立连接后停止阻塞, 程序才会向下运行
            //(可使用idea的右键该future变量选择markObject标记此future变量)
            future.sync().channel().closeFuture().sync(); // 断点1(注意断点的模式选择Thread)
            
        } catch (Exception e) {
            
            e.printStackTrace();
            
            log.debug("timeout");
            
        } finally {
            
            group.shutdownGracefully();
        }
    }
}

另外源码部分 io.netty.channel.nio.AbstractNioChannel.AbstractNioUnsafe#connect

@Override
public final void connect(final SocketAddress remoteAddress, 
                          final SocketAddress localAddress, 
                          final ChannelPromise promise) {
    // ...
    // Schedule connect timeout.
    int connectTimeoutMillis = config().getConnectTimeoutMillis();
    
    if (connectTimeoutMillis > 0) {
        
        // eventLoop开启了1个定时任务
        connectTimeoutFuture = eventLoop().schedule(new Runnable() {
            
            @Override
            public void run() {   
                
                ChannelPromise connectPromise = AbstractNioChannel.this.connectPromise;
                
                ConnectTimeoutException cause =
                    new ConnectTimeoutException("connection timed out: " + remoteAddress); // 断点2
                
                // Promise用于在2个线程间交换数据, 可以通知另外1个线程是否成功或失败
                //(通过idea调试工具, 发现此处的connectPromise正好就是上面标记的future)
                //(此处通过Promise传入异常, 唤醒主线程, 通知主线程失败, 主线程的sync就停止阻塞了, 
                //  但是主线程的future.sync()调用等来的是个异常, 所以不会调用后面的channel()方法, 
                //  而是直接抛出了异常, 进入到了catch块)
                if (connectPromise != null && connectPromise.tryFailure(cause)) {
                    close(voidPromise());
                }
            }
        }, connectTimeoutMillis, TimeUnit.MILLISECONDS);
    }
	// ...
}

2)SO_BACKLOG

  • 属于 ServerSocketChannal 参数
三次握手与accept
client server syns queue accept queue bind() listen() connect() 1. SYN SYN_SEND put SYN_RCVD 2. SYN + ACK ESTABLISHED 3. ACK put ESTABLISHED accept() client server syns queue accept queue
  1. 第一次握手,client 发送 SYN 到 server,状态修改为 SYN_SEND,server 收到,状态改变为 SYN_REVD,并将该请求放入 sync queue 队列
  2. 第二次握手,server 回复 SYN + ACK 给 client,client 收到,状态改变为 ESTABLISHED,并发送 ACK 给 server
  3. 第三次握手,server 收到 ACK,状态改变为 ESTABLISHED,将该请求从 sync queue 放入 accept queue

其中

  • 3次握手是发生在在accept前面的;
  • 为什么要放入1个全连接队列呢?因为accept接受连接的能力是有限的,放入队列就是为了接受完1个连接之后,再从队列里面取出来接受下一个连接,这个accept就可以理解为nio中的accept接受连接的方法。
  • 在 linux 2.2 之前,backlog 大小包括了两个队列的大小,在 2.2 之后,分别用下面两个参数来控制
  • sync queue - 半连接队列
    • 半连接队列就是还没有完成3次握手的连接信息先放入半连接队列
    • 大小通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 指定,在 syncookies 启用的情况下,逻辑上没有最大值限制,这个设置便被忽略
  • accept queue - 全连接队列
    • 已经完成3次握手的连接信息放入全连接队列
    • 其大小通过 /proc/sys/net/core/somaxconn 指定,在使用 listen 函数时,内核会根据传入的 backlog 参数与系统参数,取二者的较小值
    • 如果 accpet queue 队列满了,再有一个客户端再想连,server 将发送一个拒绝连接的错误信息到 client

netty 中可以通过 option(ChannelOption.SO_BACKLOG, 值) 来设置大小

可以通过下面源码查看默认大小

public class DefaultServerSocketChannelConfig extends DefaultChannelConfig
                                              implements ServerSocketChannelConfig {

    private volatile int backlog = NetUtil.SOMAXCONN;
    // ...
}

课堂调试关键断点为:io.netty.channel.nio.NioEventLoop#processSelectedKey

课堂测试

为了测试SO_BACKLOG参数的作用,使用ServerBootstrap().option(…)设置SocketChannel的参数为2(取系统的参数与应用参数的最小值,这里肯定就是2了,2比较小),然后在NioEventLoop#processSelectedKey中打上debug,并且开3个客户端与服务端建立连接,发现第三个客户端就报错了:拒绝连接

TestBacklogServer
public class TestBacklogServer {
    public static void main(String[] args) {
        new ServerBootstrap()
                .group(new NioEventLoopGroup())
                .option(ChannelOption.SO_BACKLOG, 2) // 全队列满了
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    @Override
                    protected void initChannel(NioSocketChannel ch) {
                        ch.pipeline().addLast(new LoggingHandler());
                    }
                }).bind(8080);
    }
}
TestBacklogClient
@Slf4j
public class TestBacklogClient {
    public static void main(String[] args) {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {

                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new LoggingHandler());
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 8080).sync();
            channelFuture.channel().closeFuture().sync();
        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}
debug的位置
public final class NioEventLoop extends SingleThreadEventLoop {
    
 	// ...
    
    private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
        
        // ...
        // 在此处打上debug(使用Thread模式), 这里当触发了accept事件, 下面的read()方法就相当于accept接受连接
        // (这里打上debug之后,可短请求建立连接的过程就都卡在 全连接队列里面了)
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            unsafe.read();
        }
        // ...
    }
    
    
    // ...
}
报错

当连接第三个客户端时,客户端报错如下:

21:28:41 [DEBUG] [nioEventLoopGroup-2-1] i.n.h.l.LoggingHandler - [id: 0xc42b2531] REGISTERED
21:28:41 [DEBUG] [nioEventLoopGroup-2-1] i.n.h.l.LoggingHandler - [id: 0xc42b2531] CONNECT: /127.0.0.1:8080
21:28:43 [DEBUG] [nioEventLoopGroup-2-1] i.n.h.l.LoggingHandler - [id: 0xc42b2531] CLOSE
21:28:43 [DEBUG] [nioEventLoopGroup-2-1] i.n.h.l.LoggingHandler - [id: 0xc42b2531] UNREGISTERED
Exception in thread "main" io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: no further information: /127.0.0.1:8080
Caused by: java.net.ConnectException: Connection refused: no further information
	at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
	at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
	at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:327)
	at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:336)
	at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:685)
	at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:632)
	at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:549)
	at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:511)
	at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
	at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
	at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
	at java.lang.Thread.run(Thread.java:748)
笔记测试

oio 中更容易说明,不用 debug 模式

public class Server {
    public static void main(String[] args) throws IOException {
        ServerSocket ss = new ServerSocket(8888, 2);
        Socket accept = ss.accept();
        System.out.println(accept);
        System.in.read();
    }
}

客户端启动 4 个

public class Client {
    public static void main(String[] args) throws IOException {
        try {
            Socket s = new Socket();
            System.out.println(new Date()+" connecting...");
            s.connect(new InetSocketAddress("localhost", 8888),1000);
            System.out.println(new Date()+" connected...");
            s.getOutputStream().write(1);
            System.in.read();
        } catch (IOException e) {
            System.out.println(new Date()+" connecting timeout...");
            e.printStackTrace();
        }
    }
}

第 1,2,3 个客户端都打印,但除了第一个处于 accpet 外,其它两个都处于 accept queue 中

Tue Apr 21 20:30:28 CST 2020 connecting...
Tue Apr 21 20:30:28 CST 2020 connected...

第 4 个客户端连接时

Tue Apr 21 20:53:58 CST 2020 connecting...
Tue Apr 21 20:53:59 CST 2020 connecting timeout...
java.net.SocketTimeoutException: connect timed out

3)ulimit -n

  • 属于操作系统参数
  • 它是限制一个进程能够同时打开的最大的文件描述符的数量(是为了保护系统,防止1个进程打开文件或socket太多了)

4)TCP_NODELAY

  • 属于 SocketChannal 参数(在服务端使用childOption(…)来设置)
  • Nagle算法会当发送的数据包攒够了一批了,才会把数据包发送出去,所以可能造成接收方不能及时的收到消息。netty中默认该设置为false(即开启了Nagle算法),建议为了保证及时,设置为true

5)SO_SNDBUF & SO_RCVBUF

  • SO_SNDBUF 是发送缓冲区,SO_RCVBUF是接收缓冲区,它两决定了滑动窗口的上限,建议不要调整,操作系统会自动调整
  • SO_SNDBUF 属于 SocketChannal 参数
  • SO_RCVBUF 既可用于 SocketChannal 参数,也可以用于 ServerSocketChannal 参数(建议设置到 ServerSocketChannal 上)

6)ALLOCATOR

  • 属于 SocketChannal 参数
  • 用来分配 ByteBuf, ctx.alloc()

追踪配置参数过程:由ChannelConfig 找到默认的实现类 DefaultChannelConfig,在DefaultChannelConfig的成员变量ByteBufAllocator allocator中默认赋值为ByteBufAllocator.DEFAULT,从而找到ByteBufUtil.DEFAULT_ALLOCATOR

ByteBufUtil
public final class ByteBufUtil {
    
    static final int WRITE_CHUNK_SIZE = 8192;
    
    static final ByteBufAllocator DEFAULT_ALLOCATOR;
    
    // ...
    
	static {
        
        // 系统属性配置: io.netty.allocator.type
        String allocType = SystemPropertyUtil.get(
                "io.netty.allocator.type", PlatformDependent.isAndroid() ? "unpooled" : "pooled");
        allocType = allocType.toLowerCase(Locale.US).trim();

        ByteBufAllocator alloc;
        
        if ("unpooled".equals(allocType)) {
            // 从这里点击DEFAULT进去可看到io.netty.noPreferDirect系统属性可配置是否不优先使用直接内存,默认false
            // (即优先使用直接内存)
            alloc = UnpooledByteBufAllocator.DEFAULT;
            logger.debug("-Dio.netty.allocator.type: {}", allocType);
        } else if ("pooled".equals(allocType)) {
            alloc = PooledByteBufAllocator.DEFAULT;
            logger.debug("-Dio.netty.allocator.type: {}", allocType);
        } else {
            alloc = PooledByteBufAllocator.DEFAULT;
            logger.debug("-Dio.netty.allocator.type: pooled (unknown: {})", allocType);
        }

        DEFAULT_ALLOCATOR = alloc;

        THREAD_LOCAL_BUFFER_SIZE = SystemPropertyUtil.getInt("io.netty.threadLocalDirectBufferSize", 
                                                             0);
        
        logger.debug("-Dio.netty.threadLocalDirectBufferSize: {}", THREAD_LOCAL_BUFFER_SIZE);

        MAX_CHAR_BUFFER_SIZE = SystemPropertyUtil.getInt("io.netty.maxThreadLocalCharBufferSize", 
                                                         16 * 1024);
        
        logger.debug("-Dio.netty.maxThreadLocalCharBufferSize: {}", MAX_CHAR_BUFFER_SIZE);
    }
    
    // ...
}

Idea中为java程序添加启动参数(含:VM options、Program arguments、Environment variable

测试

如下配置系统属性,查看服务端分配的ByteBuf类型(注意:是使用ctx.alloc()方法时,分配得到的ByteBuf类型哦!)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jqxEwsDA-1690809538413)(assets/image-20230730230801541.png)]

TestByteBuf
@Slf4j
public class TestByteBuf {
    public static void main(String[] args) {
        new ServerBootstrap()
                .group(new NioEventLoopGroup())
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    @Override
                    protected void initChannel(NioSocketChannel ch) {

                        ch.pipeline().addLast(new LoggingHandler());

                        ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {

                            @Override
                            public void channelRead(ChannelHandlerContext ctx, 
                                                    // 前面没有设置任何的解码器, 因此这里的msg就是ByteBuf,
                                                    // 注意:这里的msg会强制使用直接内存,不受所设置的参数控制,
                                                    //      因为netty认为直接内存对于网络io的效率更高,
                                                    Object msg) throws Exception {

                                // 注意: 这里是从ctx中分配的ByteBuf
                                ByteBuf buf = ctx.alloc().buffer();
                                log.debug("alloc buf {}", buf);

                            }
                        });
                    }
                }).bind(8080);
    }
}
TestByteBufClient
@Slf4j
public class TestByteBufClient {
    public static void main(String[] args) {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {

                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new LoggingHandler());
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            ctx.writeAndFlush(ctx.alloc().buffer().writeBytes("hello!".getBytes()));
                        }
                    });
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 8080).sync();
            channelFuture.channel().closeFuture().sync();
        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}
测试结果

当不按照图上配置时,即默认的情况如下:使用的是 PooledUnsafeDirectByteBuf,即默认为池化的直接内存

23:15:16 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x0e291fc0, L:/127.0.0.1:8080 - R:/127.0.0.1:61682] REGISTERED
23:15:16 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x0e291fc0, L:/127.0.0.1:8080 - R:/127.0.0.1:61682] ACTIVE
23:15:16 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x0e291fc0, L:/127.0.0.1:8080 - R:/127.0.0.1:61682] READ: 6B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 21                               |hello!          |
+--------+-------------------------------------------------+----------------+
23:15:16 [DEBUG] [nioEventLoopGroup-2-2] c.z.s.TestByteBuf - alloc buf PooledUnsafeDirectByteBuf(ridx: 0, widx: 0, cap: 256)
23:15:16 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x0e291fc0, L:/127.0.0.1:8080 - R:/127.0.0.1:61682] READ COMPLETE

当按照图上配置时,使用的是:UnpooledByteBufAllocator$InstrumentedUnpooledUnsafeHeapByteBuf,即非池化堆内存

23:17:34 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0xfa6477e0, L:/127.0.0.1:8080 - R:/127.0.0.1:61787] REGISTERED
23:17:34 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0xfa6477e0, L:/127.0.0.1:8080 - R:/127.0.0.1:61787] ACTIVE
23:17:34 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0xfa6477e0, L:/127.0.0.1:8080 - R:/127.0.0.1:61787] READ: 6B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 21                               |hello!          |
+--------+-------------------------------------------------+----------------+
23:17:34 [DEBUG] [nioEventLoopGroup-2-2] c.z.s.TestByteBuf - alloc buf UnpooledByteBufAllocator$InstrumentedUnpooledUnsafeHeapByteBuf(ridx: 0, widx: 0, cap: 256)
23:17:34 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0xfa6477e0, L:/127.0.0.1:8080 - R:/127.0.0.1:61787] READ COMPLETE

7)RCVBUF_ALLOCATOR

  • 属于 SocketChannal 参数
  • 控制 netty 接收缓冲区大小
  • 负责入站数据ByteBuf的初始分配,决定入站缓冲区的大小(并可动态调整),统一采用 direct 直接内存,具体池化还是非池化由 上面的提到的 allocator 决定
测试

客户端向服务端发送消息后,服务端收到这个消息,初始默认封装为ByteBuf,这个初始的ByteBuf设置其实就是由RCVBUF_ALLOCATOR设置决定的(具体规则上面有写)

服务端

@Slf4j
public class TestByteBuf {
    public static void main(String[] args) {
        new ServerBootstrap()
                .group(new NioEventLoopGroup())
                .channel(NioServerSocketChannel.class)
                .childHandler(new ChannelInitializer<NioSocketChannel>() {
                    @Override
                    protected void initChannel(NioSocketChannel ch) {

                        ch.pipeline().addLast(new LoggingHandler());

                        ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {

                            @Override
                            public void channelRead(ChannelHandlerContext ctx, 
                                                    Object msg) throws Exception {

                                /*ByteBuf buf = ctx.alloc().buffer();
                                log.debug("alloc buf {}", buf);*/

                                log.info("msg: {}", msg);

                            }
                        });
                    }
                }).bind(8080);
    }
}

客户端

@Slf4j
public class TestBacklogClient {
    public static void main(String[] args) {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {

                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new LoggingHandler());
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            ctx.writeAndFlush(ctx.alloc().buffer().writeBytes("hello!".getBytes()));
                        }
                    });
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 8080).sync();
            channelFuture.channel().closeFuture().sync();
        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}

输出如下(测试仍然是设置了-Dio.netty.allocator.type=unpooled -Dio.netty.noPreferDirect=true系统属性,但是显然第二个属性设置对此是无效的)

23:50:44 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x27e1162b, L:/127.0.0.1:8080 - R:/127.0.0.1:62407] REGISTERED
23:50:44 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x27e1162b, L:/127.0.0.1:8080 - R:/127.0.0.1:62407] ACTIVE
23:50:44 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x27e1162b, L:/127.0.0.1:8080 - R:/127.0.0.1:62407] READ: 6B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 21                               |hello!          |
+--------+-------------------------------------------------+----------------+
23:50:44 [INFO ] [nioEventLoopGroup-2-2] c.z.s.TestByteBuf - msg: UnpooledByteBufAllocator$InstrumentedUnpooledUnsafeNoCleanerDirectByteBuf(ridx: 0, widx: 6, cap: 1024)
23:50:44 [DEBUG] [nioEventLoopGroup-2-2] i.n.h.l.LoggingHandler - [id: 0x27e1162b, L:/127.0.0.1:8080 - R:/127.0.0.1:62407] READ COMPLETE

源码要点

跟源码时候,注意以下几个关键的类:

  • AbstractNioByteChannel#read()方法

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EWouPHAv-1690809538416)(assets/image-20230730234754420.png)]

  • DefaultMaxMessageRecvByteBufAllocator#allocate(ByteBufAllocator alloc)

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-e0jhsMzy-1690809538416)(assets/image-20230730234813577.png)]

  • AdaptiveRecvByteBufAllocator默认无参构造

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-My61lpdG-1690809538417)(assets/image-20230730234824342.png)]

1.3 RPC 框架

1)准备工作

这些代码可以认为是现成的,无需从头编写练习

为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息

修改Message
@Data
public abstract class Message implements Serializable {

    // 省略旧的代码

    public static final int RPC_MESSAGE_TYPE_REQUEST = 101;
    public static final int  RPC_MESSAGE_TYPE_RESPONSE = 102;

    static {
        // ...
        messageClasses.put(RPC_MESSAGE_TYPE_REQUEST, RpcRequestMessage.class);
        messageClasses.put(RPC_MESSAGE_TYPE_RESPONSE, RpcResponseMessage.class);
    }

}
RpcRequestMessage

请求消息

@Getter
@ToString(callSuper = true)
public class RpcRequestMessage extends Message {

    /**
     * 调用的接口全限定名,服务端根据它找到实现
     */
    private String interfaceName;
    
    /**
     * 调用接口中的方法名
     */
    private String methodName;
    
    /**
     * 方法返回类型
     */
    private Class<?> returnType;
    
    /**
     * 方法参数类型数组
     */
    private Class[] parameterTypes;
    
    /**
     * 方法参数值数组
     */
    private Object[] parameterValue;

    public RpcRequestMessage(int sequenceId, 
                             String interfaceName, 
                             String methodName, 
                             Class<?> returnType, 
                             Class[] parameterTypes, 
                             Object[] parameterValue) {
        
        super.setSequenceId(sequenceId);
        this.interfaceName = interfaceName;
        this.methodName = methodName;
        this.returnType = returnType;
        this.parameterTypes = parameterTypes;
        this.parameterValue = parameterValue;
    }

    @Override
    public int getMessageType() {
        return RPC_MESSAGE_TYPE_REQUEST;
    }
}
RpcResponseMessage

响应消息

@Data
@ToString(callSuper = true)
public class RpcResponseMessage extends Message {
    
    /**
     * 返回值
     */
    private Object returnValue;
    
    /**
     * 异常值
     */
    private Exception exceptionValue;

    @Override
    public int getMessageType() {
        return RPC_MESSAGE_TYPE_RESPONSE;
    }
}
RpcServer服务器架子
@Slf4j
public class RpcServer {
    
    public static void main(String[] args) {
        
        NioEventLoopGroup boss = new NioEventLoopGroup();
        NioEventLoopGroup worker = new NioEventLoopGroup();
        
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        
        // rpc 请求消息处理器,待实现
        RpcRequestMessageHandler RPC_HANDLER = new RpcRequestMessageHandler();
        
        try {
            
            ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap.channel(NioServerSocketChannel.class);
            serverBootstrap.group(boss, worker);
            
            serverBootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
                
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    
                    ch.pipeline().addLast(RPC_HANDLER);
                    
                }
            });
            
            Channel channel = serverBootstrap.bind(8080).sync().channel();
            channel.closeFuture().sync();
            
        } catch (InterruptedException e) {
            
            log.error("server error", e);
            
        } finally {
            
            boss.shutdownGracefully();
            worker.shutdownGracefully();
            
        }
    }
}
RpcClient客户端架子
public class RpcClient {
    
    public static void main(String[] args) {
        
        NioEventLoopGroup group = new NioEventLoopGroup();
        
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        
        // rpc 响应消息处理器,待实现
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        
        try {
            
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(group);
            
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    
                    ch.pipeline().addLast(RPC_HANDLER);
                }
            });
            
            Channel channel = bootstrap.connect("localhost", 8080).sync().channel();
            channel.closeFuture().sync();
            
        } catch (Exception e) {
            
            log.error("client error", e);
            
        } finally {
            
            group.shutdownGracefully();
            
        }
    }
}
ServicesFactory

服务器端的 service 获取

public class ServicesFactory {

    static Properties properties;
    
    static Map<Class<?>, Object> map = new ConcurrentHashMap<>();

    static {
        
        try (InputStream in = Config.class.getResourceAsStream("/application.properties")) {
            
            properties = new Properties();
            
            properties.load(in);
            
            Set<String> names = properties.stringPropertyNames();
            
            for (String name : names) {
                
                if (name.endsWith("Service")) {
                    
                    Class<?> interfaceClass = Class.forName(name);
                    
                    Class<?> instanceClass = Class.forName(properties.getProperty(name));
                    
                    map.put(interfaceClass, instanceClass.newInstance());
                }
            }
            
        } catch (IOException 
                 | ClassNotFoundException 
                 | InstantiationException 
                 | IllegalAccessException e) {
            
            throw new ExceptionInInitializerError(e);
        }
    }

    public static <T> T getService(Class<T> interfaceClass) {
        
        return (T) map.get(interfaceClass);
    }
}

相关配置 application.properties

serializer.algorithm=Json
cn.itcast.server.service.HelloService=cn.itcast.server.service.HelloServiceImpl

2)服务器 handler

RpcRequestMessageHandler
@Slf4j
@ChannelHandler.Sharable
public class RpcRequestMessageHandler extends SimpleChannelInboundHandler<RpcRequestMessage> {

    @Override
    protected void channelRead0(ChannelHandlerContext ctx, RpcRequestMessage message) {
        
        RpcResponseMessage response = new RpcResponseMessage();
        
        response.setSequenceId(message.getSequenceId());
        
        try {
            // 获取真正的实现对象
            Object service = ServicesFactory.getService(Class.forName(message.getInterfaceName()));
            
            // 获取要调用的方法
            Method method = service.getClass()
                                   .getMethod(message.getMethodName(), message.getParameterTypes());
            
            // 调用方法
            Object invoke = method.invoke(service, message.getParameterValue());
            
            // 调用成功
            response.setReturnValue(invoke);
            
        } catch (Exception e) {
            
            e.printStackTrace();
            
            // 调用异常
            response.setExceptionValue(e);
        }
        
        // 返回结果
        ctx.writeAndFlush(response);
    }
}

3)RpcClient第一版

只发消息

@Slf4j
public class RpcClient {
    public static void main(String[] args) {
        
        NioEventLoopGroup group = new NioEventLoopGroup();
        
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        
        try {
            
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(group);
            
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    
                    ch.pipeline().addLast(new ProcotolFrameDecoder());
                    
                    ch.pipeline().addLast(LOGGING_HANDLER);
                    
                    ch.pipeline().addLast(MESSAGE_CODEC);
                    
                    ch.pipeline().addLast(RPC_HANDLER);
                }
                
            });
            
            // 客户端请求与服务端建立连接
            Channel channel = bootstrap.connect("localhost", 8080).sync().channel();

            // 客户端发送rpc请求消息
            //(这个writeAndFlush方法也是命令调用, 发出写出消息命令后, 就会立即返回, 真正写出消息是交给其它线程完成)
            ChannelFuture future = channel.writeAndFlush(
                new RpcRequestMessage(                
                    1,
                    "cn.itcast.server.service.HelloService",
                    "sayHello",
                    String.class,
                    new Class[]{String.class},
                    new Object[]{"张三"}
                )
            )
                // 这里可以使用addListener方法对上面这个writeAndFlush作调试
                //(也可以调用future.sync()对future在当前线程作同步调用)
                //(这里的promise就是上面的future, 是同一个对象)
                .addListener(promise -> {

                    if (!promise.isSuccess()) {

                        Throwable cause = promise.cause();

                        log.error("error", cause);

                    }
                });

            channel.closeFuture().sync(); // 调用sync()方法, 同步阻塞, 当channel关闭时, 才会向下运行
            
        } catch (Exception e) {
            
            log.error("client error", e);
            
        } finally {
            
            group.shutdownGracefully();
            
        }
    }
}

4)客户端 handler 第一版

@Slf4j
@ChannelHandler.Sharable
public class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {
    @Override
    protected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {
        log.debug("{}", msg);
    }
}
流程分析

客户端请求与服务端建立连接,然后客户端发送了1个rpc请求消息,这个请求消息就找到了客户端的所有出站处理器,从下往上找取依次执行(首先是自定义编解码器对消息编码、日志处理器记录日志),最后就发给了服务端。消息到达服务器端,服务端拿到消息后,进行入站处理器依次处理(首先是粘包半包处理、日志处理器记录日志、自定义编解码器对消息解码、服务端自定义rpc请求处理器),在服务端自定义rpc请求处理器中通过获取解码后的消息,获取到反射相关的信息,找到 要调用的目标对象和方法,进行反射调用,获得反射调用结果,然后把调用结果(成功就是结果,失败就是异常封装到rpc响应消息对象中)通过ctx写回给客户端,服务端写回响应消息之前,又会依次经过服务端出站处理器(首先是自定义编解码器对消息编码、日志处理器记录日志),最后就发给了客户端。消息到达客户端,客户端拿到消息后,再做入站处理器依次处理(首先是粘包半包处理、日志处理器记录日志、自定义编解码器对消息解码、客户端rpc响应处理器),其中客户端rpc响应处理器最后对消息进行了打印。

Gson问题

上面的自定义编解码器,在序列化 和反序列化 Class类的时候,会报错。因此,需要往Gson对象中注册类型适配器,使用注册过类型适配器的Gson对象去做转换。下面创建了ClassCodec对象(实现了JsonSerializer>, JsonDeserializer>接口),并注册到了Gson中,以支持Class类的json转换操作。

/**
 * 用于扩展序列化、反序列化算法
 */
public interface Serializer {

    // 反序列化方法
    <T> T deserialize(Class<T> clazz, byte[] bytes);

    // 序列化方法
    <T> byte[] serialize(T object);

    enum Algorithm implements Serializer {

        Java {
            // ...java序列化和反序列化不作修改, 省略
        },

        Json {
            @Override
            public <T> T deserialize(Class<T> clazz, byte[] bytes) {
                
                Gson gson = new GsonBuilder()
                    				.registerTypeAdapter(Class.class, new Serializer.ClassCodec())
                                    .create();
                
                String json = new String(bytes, StandardCharsets.UTF_8);
                
                return gson.fromJson(json, clazz);
            }

            @Override
            public <T> byte[] serialize(T object) {
                
                Gson gson = new GsonBuilder()
                                    .registerTypeAdapter(Class.class, new Serializer.ClassCodec())
                                    .create();
                
                String json = gson.toJson(object);
                
                return json.getBytes(StandardCharsets.UTF_8);
            }
        }
    }
    
    class ClassCodec implements JsonSerializer<Class<?>>, JsonDeserializer<Class<?>> {

        @Override
        public Class<?> deserialize(JsonElement json, 
                                    Type typeOfT, 
                                    JsonDeserializationContext context) throws JsonParseException {
            
            try {
                
                String str = json.getAsString();
                
                return Class.forName(str);
                
            } catch (ClassNotFoundException e) {
                
                throw new JsonParseException(e);
            }
        }

        @Override             //   String.class
        public JsonElement serialize(Class<?> src, 
                                     Type typeOfSrc, 
                                     JsonSerializationContext context) {
            
            // class -> json
            return new JsonPrimitive(src.getName());
        }
    }
}

5)RpcClientManager

  1. 获得channel:使用netty的Bootstrap客户端启动器连接netty服务端,获得channel,并将此channel使用单例模式设计成唯一实例

  2. 使用代理发起rpc请求:使用动态代理,屏蔽发起rpc请求是封装消息的过程(把这个复杂的过程封装到jdk的InvocationHandler中),然后使用channel写出消息

  3. 两个线程通信拿结果的问题:发起rpc请求的线程是main线程,获得结果的线程是netty的nio线程(netty中的eventLoop),因此,需要把nio线程获得的结果给到main线程的调用处(提示:使用Promise可以做这件事)。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zzI0YCUf-1690809538418)(assets/image-20230731121531720.png)]

@Slf4j
public class RpcClientManager {

    public static void main(String[] args) {
        HelloService service = getProxyService(HelloService.class);
        System.out.println(service.sayHello("zhangsan"));
        // System.out.println(service.sayHello("lisi"));
        // System.out.println(service.sayHello("wangwu"));
    }

    // 创建代理类
    public static <T> T getProxyService(Class<T> serviceClass) {
        
        ClassLoader loader = serviceClass.getClassLoader();
        
        Class<?>[] interfaces = new Class[]{serviceClass};
        
        Object o = Proxy.newProxyInstance(loader, interfaces, (proxy, method, args) -> {
            
            // 1. 将方法调用转换为 消息对象
            int sequenceId = SequenceIdGenerator.nextId();      
            RpcRequestMessage msg = new RpcRequestMessage(
                    sequenceId,
                    serviceClass.getName(),
                    method.getName(),
                    method.getReturnType(),
                    method.getParameterTypes(),
                    args
            );
            
            // 2. 将消息对象发送出去
            getChannel().writeAndFlush(msg);

            // 3. 准备一个空 Promise 对象,来接收结果             指定 promise 对象 异步接收结果线程
            DefaultPromise<Object> promise = new DefaultPromise<>(getChannel().eventLoop());
            
            RpcResponseMessageHandler.PROMISES.put(sequenceId, promise);

            //promise.addListener(future -> {   // => 这个回调方法就是由创建DefaultPromise时构造方法中所传入的
                 // 线程                         //    的 异步接收结果线程 来执行。但是这里没有使用这种用法, 这里
            // });                              //    使用的是下面在调用线程上(main线程)作同步等待

            // 4. 等待 promise 结果
            // (与promise.sync()的区别在于:promise.await()不会抛出异常;而promise.sync()会抛出异常)
            promise.await(); 
            
            if(promise.isSuccess()) {
                
                // 调用正常
                return promise.getNow();
                
            } else {
                
                // 调用失败
                throw new RuntimeException(promise.cause());
            }
            
        });
        return (T) o;
    }

    private static Channel channel = null;
    private static final Object LOCK = new Object();

    // 获取唯一的 channel 对象
    public static Channel getChannel() {
        if (channel != null) {
            return channel;
        }
        synchronized (LOCK) {
            if (channel != null) {
                return channel;
            }
            initChannel();
            return channel;
        }
    }

    // 初始化 channel 方法
    private static void initChannel() {
        
        NioEventLoopGroup group = new NioEventLoopGroup();
        
        LoggingHandler LOGGING_HANDLER = new LoggingHandler(LogLevel.DEBUG);
        
        MessageCodecSharable MESSAGE_CODEC = new MessageCodecSharable();
        
        RpcResponseMessageHandler RPC_HANDLER = new RpcResponseMessageHandler();
        
        Bootstrap bootstrap = new Bootstrap();
        
        bootstrap.channel(NioSocketChannel.class);
        
        bootstrap.group(group);
        
        bootstrap.handler(new ChannelInitializer<SocketChannel>() {
            
            @Override
            protected void initChannel(SocketChannel ch) throws Exception {
                
                ch.pipeline().addLast(new ProcotolFrameDecoder());
                
                ch.pipeline().addLast(LOGGING_HANDLER);
                
                ch.pipeline().addLast(MESSAGE_CODEC);
                
                ch.pipeline().addLast(RPC_HANDLER);
            }
            
        });
        
        try {
            
            channel = bootstrap.connect("localhost", 8080).sync().channel();
            
            // 当channel关闭时, 执行的异步任务(由原来的同步, 改成了异步)
            channel.closeFuture().addListener(future -> {
                group.shutdownGracefully();
            });
            
        } catch (Exception e) {
            log.error("client error", e);
        }
    }
}
SequenceIdGenerator
public abstract class SequenceIdGenerator {
    
    private static final AtomicInteger id = new AtomicInteger();

    public static int nextId() {
        return id.incrementAndGet();
    }
}
流程分析

动态代理执行流程分析: main线程调用代理对象的方法并传入方法参数,触发代理对象的InvocationHandler#invoke方法执行,使用channel写出消息(发出rpc请求),但是不能立即得到响应结果,因此创建1个Promise对象来接收响应消息,而Promise放在ConcurrentHashMap中(Promise与rpc请求绑定的sequenceId绑定到一起保存在这个Map中),然后调用promise.await()方法等待结果。当响应回来后,在RpcResponseMessageHandler中(由nio线程执行,即eventLoop)根据响应的sequenceId从ConcurrentHashMap中找到对应的Promise,将结果设置到此Promise对象中,一旦Promise对象中被填入结果(不管是成功还是失败),main线程中调用promise.await()方法就会停止阻塞而向下运行,然后获取响应结果,将结果返回给代理对象的调用者。

6)RpcResponseMessageHandler

@Slf4j
@ChannelHandler.Sharable
public class RpcResponseMessageHandler extends SimpleChannelInboundHandler<RpcResponseMessage> {

    //                       序号     用来接收结果的 promise 对象
    public static final Map<Integer, Promise<Object>> PROMISES = new ConcurrentHashMap<>();

    @Override

    protected void channelRead0(ChannelHandlerContext ctx, RpcResponseMessage msg) throws Exception {
        
        log.debug("{}", msg);
        
        // 根据响应消息的的sequenceId 拿到对应的 空promise, 并且移除该Promise对象
        Promise<Object> promise = PROMISES.remove(msg.getSequenceId());
        
        if (promise != null) {
            
            Object returnValue = msg.getReturnValue();
            
            Exception exceptionValue = msg.getExceptionValue();
            
            // 当promise被填充值后, 主线程使用promise.await()方法就会停止阻塞向下运行
            if(exceptionValue != null) {
                
                promise.setFailure(exceptionValue);
                
            } else {
                
                promise.setSuccess(returnValue);
            }
        }
        
    }
}

2. 源码分析

2.1 启动剖析

我们就来看看 netty 中对下面的代码是怎样进行处理的

//1 netty 中使用 NioEventLoopGroup (简称 nio boss 线程)来封装线程和 selector
Selector selector = Selector.open(); 

//2 创建 NioServerSocketChannel,同时会初始化它关联的 handler,以及为原生 ssc 存储 config
NioServerSocketChannel attachment = new NioServerSocketChannel();

//3 创建 NioServerSocketChannel 时,创建了 java 原生的 ServerSocketChannel
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); 
serverSocketChannel.configureBlocking(false);

//4 启动 nio boss 线程执行接下来的操作

//5 注册(仅关联 selector 和 NioServerSocketChannel),未关注事件
SelectionKey selectionKey = serverSocketChannel.register(selector, 0, attachment);

//6 head -> 初始化器 -> ServerBootstrapAcceptor -> tail,初始化器是一次性的,只为添加 acceptor

//7 绑定端口
serverSocketChannel.bind(new InetSocketAddress(8080));

//8 触发 channel active 事件,在 head 中关注 op_accept 事件
selectionKey.interestOps(SelectionKey.OP_ACCEPT);

入口 io.netty.bootstrap.ServerBootstrap#bind

关键代码 io.netty.bootstrap.AbstractBootstrap#doBind

private ChannelFuture doBind(final SocketAddress localAddress) {
	// 1. 执行初始化和注册 regFuture 会由 initAndRegister 设置其是否完成,从而回调 3.2 处代码
    final ChannelFuture regFuture = initAndRegister();
    final Channel channel = regFuture.channel();
    if (regFuture.cause() != null) {
        return regFuture;
    }

    // 2. 因为是 initAndRegister 异步执行,需要分两种情况来看,调试时也需要通过 suspend 断点类型加以区分
    // 2.1 如果已经完成
    if (regFuture.isDone()) {
        ChannelPromise promise = channel.newPromise();
        // 3.1 立刻调用 doBind0
        doBind0(regFuture, channel, localAddress, promise);
        return promise;
    } 
    // 2.2 还没有完成
    else {
        final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
        // 3.2 回调 doBind0
        regFuture.addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                Throwable cause = future.cause();
                if (cause != null) {
                    // 处理异常...
                    promise.setFailure(cause);
                } else {
                    promise.registered();
					// 3. 由注册线程去执行 doBind0
                    doBind0(regFuture, channel, localAddress, promise);
                }
            }
        });
        return promise;
    }
}

关键代码 io.netty.bootstrap.AbstractBootstrap#initAndRegister

final ChannelFuture initAndRegister() {
    Channel channel = null;
    try {
        channel = channelFactory.newChannel();
        // 1.1 初始化 - 做的事就是添加一个初始化器 ChannelInitializer
        init(channel);
    } catch (Throwable t) {
        // 处理异常...
        return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
    }

    // 1.2 注册 - 做的事就是将原生 channel 注册到 selector 上
    ChannelFuture regFuture = config().group().register(channel);
    if (regFuture.cause() != null) {
        // 处理异常...
    }
    return regFuture;
}

关键代码 io.netty.bootstrap.ServerBootstrap#init

// 这里 channel 实际上是 NioServerSocketChannel
void init(Channel channel) throws Exception {
    final Map<ChannelOption<?>, Object> options = options0();
    synchronized (options) {
        setChannelOptions(channel, options, logger);
    }

    final Map<AttributeKey<?>, Object> attrs = attrs0();
    synchronized (attrs) {
        for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
            @SuppressWarnings("unchecked")
            AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
            channel.attr(key).set(e.getValue());
        }
    }

    ChannelPipeline p = channel.pipeline();

    final EventLoopGroup currentChildGroup = childGroup;
    final ChannelHandler currentChildHandler = childHandler;
    final Entry<ChannelOption<?>, Object>[] currentChildOptions;
    final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
    synchronized (childOptions) {
        currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0));
    }
    synchronized (childAttrs) {
        currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0));
    }
	
    // 为 NioServerSocketChannel 添加初始化器
    p.addLast(new ChannelInitializer<Channel>() {
        @Override
        public void initChannel(final Channel ch) throws Exception {
            final ChannelPipeline pipeline = ch.pipeline();
            ChannelHandler handler = config.handler();
            if (handler != null) {
                pipeline.addLast(handler);
            }

            // 初始化器的职责是将 ServerBootstrapAcceptor 加入至 NioServerSocketChannel
            ch.eventLoop().execute(new Runnable() {
                @Override
                public void run() {
                    pipeline.addLast(new ServerBootstrapAcceptor(
                            ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
                }
            });
        }
    });
}

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#register

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 首次执行 execute 方法时,会启动 nio 线程,之后注册等操作在 nio 线程上执行
            // 因为只有一个 NioServerSocketChannel 因此,也只会有一个 boss nio 线程
            // 这行代码完成的事实是 main -> nio boss 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        // 1.2.1 原生的 nio channel 绑定到 selector 上,注意此时没有注册 selector 关注事件,附件为 NioServerSocketChannel
        doRegister();
        neverRegistered = false;
        registered = true;

        // 1.2.2 执行 NioServerSocketChannel 初始化器的 initChannel
        pipeline.invokeHandlerAddedIfNeeded();

        // 回调 3.2 io.netty.bootstrap.AbstractBootstrap#doBind0
        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();
        
        // 对应 server socket channel 还未绑定,isActive 为 false
        if (isActive()) {
            if (firstRegistration) {
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        // Close the channel directly to avoid FD leak.
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

关键代码 io.netty.channel.ChannelInitializer#initChannel

private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
    if (initMap.add(ctx)) { // Guard against re-entrance.
        try {
            // 1.2.2.1 执行初始化
            initChannel((C) ctx.channel());
        } catch (Throwable cause) {
            exceptionCaught(ctx, cause);
        } finally {
            // 1.2.2.2 移除初始化器
            ChannelPipeline pipeline = ctx.pipeline();
            if (pipeline.context(this) != null) {
                pipeline.remove(this);
            }
        }
        return true;
    }
    return false;
}

关键代码 io.netty.bootstrap.AbstractBootstrap#doBind0

// 3.1 或 3.2 执行 doBind0
private static void doBind0(
        final ChannelFuture regFuture, final Channel channel,
        final SocketAddress localAddress, final ChannelPromise promise) {

    channel.eventLoop().execute(new Runnable() {
        @Override
        public void run() {
            if (regFuture.isSuccess()) {
                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            } else {
                promise.setFailure(regFuture.cause());
            }
        }
    });
}

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#bind

public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
    assertEventLoop();

    if (!promise.setUncancellable() || !ensureOpen(promise)) {
        return;
    }

    if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
        localAddress instanceof InetSocketAddress &&
        !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
        !PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
        // 记录日志...
    }

    boolean wasActive = isActive();
    try {
        // 3.3 执行端口绑定
        doBind(localAddress);
    } catch (Throwable t) {
        safeSetFailure(promise, t);
        closeIfClosed();
        return;
    }

    if (!wasActive && isActive()) {
        invokeLater(new Runnable() {
            @Override
            public void run() {
                // 3.4 触发 active 事件
                pipeline.fireChannelActive();
            }
        });
    }

    safeSetSuccess(promise);
}

3.3 关键代码 io.netty.channel.socket.nio.NioServerSocketChannel#doBind

protected void doBind(SocketAddress localAddress) throws Exception {
    if (PlatformDependent.javaVersion() >= 7) {
        javaChannel().bind(localAddress, config.getBacklog());
    } else {
        javaChannel().socket().bind(localAddress, config.getBacklog());
    }
}

3.4 关键代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
	// 触发 read (NioServerSocketChannel 上的 read 不是读取数据,只是为了触发 channel 的事件注册)
    readIfIsAutoRead();
}

关键代码 io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;

    final int interestOps = selectionKey.interestOps();
    // readInterestOp 取值是 16,在 NioServerSocketChannel 创建时初始化好,代表关注 accept 事件
    if ((interestOps & readInterestOp) == 0) {
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

2.2 NioEventLoop 剖析

NioEventLoop 线程不仅要处理 IO 事件,还要处理 Task(包括普通任务和定时任务),

提交任务代码 io.netty.util.concurrent.SingleThreadEventExecutor#execute

public void execute(Runnable task) {
    if (task == null) {
        throw new NullPointerException("task");
    }

    boolean inEventLoop = inEventLoop();
    // 添加任务,其中队列使用了 jctools 提供的 mpsc 无锁队列
    addTask(task);
    if (!inEventLoop) {
        // inEventLoop 如果为 false 表示由其它线程来调用 execute,即首次调用,这时需要向 eventLoop 提交首个任务,启动死循环,会执行到下面的 doStartThread
        startThread();
        if (isShutdown()) {
            // 如果已经 shutdown,做拒绝逻辑,代码略...
        }
    }

    if (!addTaskWakesUp && wakesUpForTask(task)) {
        // 如果线程由于 IO select 阻塞了,添加的任务的线程需要负责唤醒 NioEventLoop 线程
        wakeup(inEventLoop);
    }
}

唤醒 select 阻塞线程io.netty.channel.nio.NioEventLoop#wakeup

@Override
protected void wakeup(boolean inEventLoop) {
    if (!inEventLoop && wakenUp.compareAndSet(false, true)) {
        selector.wakeup();
    }
}

启动 EventLoop 主循环 io.netty.util.concurrent.SingleThreadEventExecutor#doStartThread

private void doStartThread() {
    assert thread == null;
    executor.execute(new Runnable() {
        @Override
        public void run() {
            // 将线程池的当前线程保存在成员变量中,以便后续使用
            thread = Thread.currentThread();
            if (interrupted) {
                thread.interrupt();
            }

            boolean success = false;
            updateLastExecutionTime();
            try {
                // 调用外部类 SingleThreadEventExecutor 的 run 方法,进入死循环,run 方法见下
                SingleThreadEventExecutor.this.run();
                success = true;
            } catch (Throwable t) {
                logger.warn("Unexpected exception from an event executor: ", t);
            } finally {
				// 清理工作,代码略...
            }
        }
    });
}

io.netty.channel.nio.NioEventLoop#run 主要任务是执行死循环,不断看有没有新任务,有没有 IO 事件

protected void run() {
    for (;;) {
        try {
            try {
                // calculateStrategy 的逻辑如下:
                // 有任务,会执行一次 selectNow,清除上一次的 wakeup 结果,无论有没有 IO 事件,都会跳过 switch
                // 没有任务,会匹配 SelectStrategy.SELECT,看是否应当阻塞
                switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;

                    case SelectStrategy.BUSY_WAIT:

                    case SelectStrategy.SELECT:
                        // 因为 IO 线程和提交任务线程都有可能执行 wakeup,而 wakeup 属于比较昂贵的操作,因此使用了一个原子布尔对象 wakenUp,它取值为 true 时,表示该由当前线程唤醒
                        // 进行 select 阻塞,并设置唤醒状态为 false
                        boolean oldWakenUp = wakenUp.getAndSet(false);
                        
                        // 如果在这个位置,非 EventLoop 线程抢先将 wakenUp 置为 true,并 wakeup
                        // 下面的 select 方法不会阻塞
                        // 等 runAllTasks 处理完成后,到再循环进来这个阶段新增的任务会不会及时执行呢?
                        // 因为 oldWakenUp 为 true,因此下面的 select 方法就会阻塞,直到超时
                        // 才能执行,让 select 方法无谓阻塞
                        select(oldWakenUp);

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                    default:
                }
            } catch (IOException e) {
                rebuildSelector0();
                handleLoopException(e);
                continue;
            }

            cancelledKeys = 0;
            needsToSelectAgain = false;
            // ioRatio 默认是 50
            final int ioRatio = this.ioRatio;
            if (ioRatio == 100) {
                try {
                    processSelectedKeys();
                } finally {
                    // ioRatio 为 100 时,总是运行完所有非 IO 任务
                    runAllTasks();
                }
            } else {                
                final long ioStartTime = System.nanoTime();
                try {
                    processSelectedKeys();
                } finally {
                    // 记录 io 事件处理耗时
                    final long ioTime = System.nanoTime() - ioStartTime;
                    // 运行非 IO 任务,一旦超时会退出 runAllTasks
                    runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
        try {
            if (isShuttingDown()) {
                closeAll();
                if (confirmShutdown()) {
                    return;
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
    }
}

注意

这里有个费解的地方就是 wakeup,它既可以由提交任务的线程来调用(比较好理解),也可以由 EventLoop 线程来调用(比较费解),这里要知道 wakeup 方法的效果:

  • 由非 EventLoop 线程调用,会唤醒当前在执行 select 阻塞的 EventLoop 线程
  • 由 EventLoop 自己调用,会本次的 wakeup 会取消下一次的 select 操作

参考下图

io.netty.channel.nio.NioEventLoop#select

private void select(boolean oldWakenUp) throws IOException {
    Selector selector = this.selector;
    try {
        int selectCnt = 0;
        long currentTimeNanos = System.nanoTime();
        // 计算等待时间
        // * 没有 scheduledTask,超时时间为 1s
        // * 有 scheduledTask,超时时间为 `下一个定时任务执行时间 - 当前时间`
        long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

        for (;;) {
            long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
            // 如果超时,退出循环
            if (timeoutMillis <= 0) {
                if (selectCnt == 0) {
                    selector.selectNow();
                    selectCnt = 1;
                }
                break;
            }

            // 如果期间又有 task 退出循环,如果没这个判断,那么任务就会等到下次 select 超时时才能被执行
            // wakenUp.compareAndSet(false, true) 是让非 NioEventLoop 不必再执行 wakeup
            if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                selector.selectNow();
                selectCnt = 1;
                break;
            }

            // select 有限时阻塞
            // 注意 nio 有 bug,当 bug 出现时,select 方法即使没有时间发生,也不会阻塞住,导致不断空轮询,cpu 占用 100%
            int selectedKeys = selector.select(timeoutMillis);
            // 计数加 1
            selectCnt ++;

            // 醒来后,如果有 IO 事件、或是由非 EventLoop 线程唤醒,或者有任务,退出循环
            if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                break;
            }
            if (Thread.interrupted()) {
               	// 线程被打断,退出循环
                // 记录日志
                selectCnt = 1;
                break;
            }

            long time = System.nanoTime();
            if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                // 如果超时,计数重置为 1,下次循环就会 break
                selectCnt = 1;
            } 
            // 计数超过阈值,由 io.netty.selectorAutoRebuildThreshold 指定,默认 512
            // 这是为了解决 nio 空轮询 bug
            else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                    selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                // 重建 selector
                selector = selectRebuildSelector(selectCnt);
                selectCnt = 1;
                break;
            }

            currentTimeNanos = time;
        }

        if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
            // 记录日志
        }
    } catch (CancelledKeyException e) {
        // 记录日志
    }
}

处理 keys io.netty.channel.nio.NioEventLoop#processSelectedKeys

private void processSelectedKeys() {
    if (selectedKeys != null) {
        // 通过反射将 Selector 实现类中的就绪事件集合替换为 SelectedSelectionKeySet 
        // SelectedSelectionKeySet 底层为数组实现,可以提高遍历性能(原本为 HashSet)
        processSelectedKeysOptimized();
    } else {
        processSelectedKeysPlain(selector.selectedKeys());
    }
}

io.netty.channel.nio.NioEventLoop#processSelectedKey

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
    // 当 key 取消或关闭时会导致这个 key 无效
    if (!k.isValid()) {
        // 无效时处理...
        return;
    }

    try {
        int readyOps = k.readyOps();
        // 连接事件
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);

            unsafe.finishConnect();
        }

        // 可写事件
        if ((readyOps & SelectionKey.OP_WRITE) != 0) {
            ch.unsafe().forceFlush();
        }

        // 可读或可接入事件
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            // 如果是可接入 io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read
            // 如果是可读 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read
            unsafe.read();
        }
    } catch (CancelledKeyException ignored) {
        unsafe.close(unsafe.voidPromise());
    }
}

2.3 accept 剖析

nio 中如下代码,在 netty 中的流程

//1 阻塞直到事件发生
selector.select();

Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
while (iter.hasNext()) {    
    //2 拿到一个事件
    SelectionKey key = iter.next();
    
    //3 如果是 accept 事件
    if (key.isAcceptable()) {
        
        //4 执行 accept
        SocketChannel channel = serverSocketChannel.accept();
        channel.configureBlocking(false);
        
        //5 关注 read 事件
        channel.register(selector, SelectionKey.OP_READ);
    }
    // ...
}

先来看可接入事件处理(accept)

io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read

public void read() {
    assert eventLoop().inEventLoop();
    final ChannelConfig config = config();
    final ChannelPipeline pipeline = pipeline();    
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    allocHandle.reset(config);

    boolean closed = false;
    Throwable exception = null;
    try {
        try {
            do {
				// doReadMessages 中执行了 accept 并创建 NioSocketChannel 作为消息放入 readBuf
                // readBuf 是一个 ArrayList 用来缓存消息
                int localRead = doReadMessages(readBuf);
                if (localRead == 0) {
                    break;
                }
                if (localRead < 0) {
                    closed = true;
                    break;
                }
				// localRead 为 1,就一条消息,即接收一个客户端连接
                allocHandle.incMessagesRead(localRead);
            } while (allocHandle.continueReading());
        } catch (Throwable t) {
            exception = t;
        }

        int size = readBuf.size();
        for (int i = 0; i < size; i ++) {
            readPending = false;
            // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理
            // io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead
            pipeline.fireChannelRead(readBuf.get(i));
        }
        readBuf.clear();
        allocHandle.readComplete();
        pipeline.fireChannelReadComplete();

        if (exception != null) {
            closed = closeOnReadError(exception);

            pipeline.fireExceptionCaught(exception);
        }

        if (closed) {
            inputShutdown = true;
            if (isOpen()) {
                close(voidPromise());
            }
        }
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

关键代码 io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead

public void channelRead(ChannelHandlerContext ctx, Object msg) {
    // 这时的 msg 是 NioSocketChannel
    final Channel child = (Channel) msg;

    // NioSocketChannel 添加  childHandler 即初始化器
    child.pipeline().addLast(childHandler);

    // 设置选项
    setChannelOptions(child, childOptions, logger);

    for (Entry<AttributeKey<?>, Object> e: childAttrs) {
        child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
    }

    try {
        // 注册 NioSocketChannel 到 nio worker 线程,接下来的处理也移交至 nio worker 线程
        childGroup.register(child).addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                if (!future.isSuccess()) {
                    forceClose(child, future.cause());
                }
            }
        });
    } catch (Throwable t) {
        forceClose(child, t);
    }
}

又回到了熟悉的 io.netty.channel.AbstractChannel.AbstractUnsafe#register 方法

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 这行代码完成的事实是 nio boss -> nio worker 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        doRegister();
        neverRegistered = false;
        registered = true;
		
        // 执行初始化器,执行前 pipeline 中只有 head -> 初始化器 -> tail
        pipeline.invokeHandlerAddedIfNeeded();
        // 执行后就是 head -> logging handler -> my handler -> tail

        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();
        
        if (isActive()) {
            if (firstRegistration) {
                // 触发 pipeline 上 active 事件
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

回到了熟悉的代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
	// 触发 read (NioSocketChannel 这里 read,只是为了触发 channel 的事件注册,还未涉及数据读取)
    readIfIsAutoRead();
}

io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;
	// 这时候 interestOps 是 0
    final int interestOps = selectionKey.interestOps();
    if ((interestOps & readInterestOp) == 0) {
        // 关注 read 事件
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

2.4 read 剖析

再来看可读事件 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read,注意发送的数据未必能够一次读完,因此会触发多次 nio read 事件,一次事件内会触发多次 pipeline read,一次事件会触发一次 pipeline read complete

public final void read() {
    final ChannelConfig config = config();
    if (shouldBreakReadReady(config)) {
        clearReadPending();
        return;
    }
    final ChannelPipeline pipeline = pipeline();
    // io.netty.allocator.type 决定 allocator 的实现
    final ByteBufAllocator allocator = config.getAllocator();
    // 用来分配 byteBuf,确定单次读取大小
    final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
    allocHandle.reset(config);

    ByteBuf byteBuf = null;
    boolean close = false;
    try {
        do {
            byteBuf = allocHandle.allocate(allocator);
            // 读取
            allocHandle.lastBytesRead(doReadBytes(byteBuf));
            if (allocHandle.lastBytesRead() <= 0) {
                byteBuf.release();
                byteBuf = null;
                close = allocHandle.lastBytesRead() < 0;
                if (close) {
                    readPending = false;
                }
                break;
            }

            allocHandle.incMessagesRead(1);
            readPending = false;
            // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理 NioSocketChannel 上的 handler
            pipeline.fireChannelRead(byteBuf);
            byteBuf = null;
        } 
        // 是否要继续循环
        while (allocHandle.continueReading());

        allocHandle.readComplete();
        // 触发 read complete 事件
        pipeline.fireChannelReadComplete();

        if (close) {
            closeOnRead(pipeline);
        }
    } catch (Throwable t) {
        handleReadException(pipeline, byteBuf, t, close, allocHandle);
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#continueReading(io.netty.util.UncheckedBooleanSupplier)

public boolean continueReading(UncheckedBooleanSupplier maybeMoreDataSupplier) {
    return 
           // 一般为 true
           config.isAutoRead() &&
           // respectMaybeMoreData 默认为 true
           // maybeMoreDataSupplier 的逻辑是如果预期读取字节与实际读取字节相等,返回 true
           (!respectMaybeMoreData || maybeMoreDataSupplier.get()) &&
           // 小于最大次数,maxMessagePerRead 默认 16
           totalMessages < maxMessagePerRead &&
           // 实际读到了数据
           totalBytesRead > 0;
}

你可能感兴趣的:(netty,学习,python,开发语言)