学习Python的第四天之爬虫

爬虫

1.提取本地html中的数据 用Lxml

(1).新建html文件

(2).读取

(3).使用Lxml中的xpath语法进行提取

#调用Lxml
from lxml import  html

#读取本地html文件
with open('./index.html','r',encoding='utf-8') as f:
    html_data = f.read()
   
    # 解析html文件,获得selector对象,解析树的根结点
    selector = html.fromstring(html_data)

    # selector中调用xpath方法,提取h1标签中的内容
    h1=selector.xpath('/html/body/h1/text()')
    print(h1)

'' // " 双斜杠可以表示从任意位置出发

用法: //标签1[@属性=属性值]/标签2[@属性=属性值]..../text()

# 获取文本内容
a = selector.xpath('//div[@id="container"]/a/text()')
print(a)

# 获取属性
link = selector.xpath('//div[@id="container"]/a/@href')
print(link[0])

2.提取远程html中的数据 用requests

# 导入
import requests

url = 'http://www.baidu.com'
# url = 'http://www.taobao.com'
# url = 'https://www.jd.com'
response = requests.get(url)
print(response)
# 获取str类型的响应
print(response.text)
# 获取bytes类型的响应
print(response.content)
# 获取响应头
print(response.headers)
# 获取网页状态码,200成功,404资源找不到,500后台出错
print(response.status_code)

# 没有添加请求头的知乎网站,报400
response = requests.get('https://www.zhihu.com/')
print(response.status_code)

# 添加请求头,伪装成浏览器,成功
headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}

response = requests.get('https://www.zhihu.com/',headers=headers)
print(response.status_code)

3.实例1 抓取当当网某一本书的信息

#请求远程端站点
import requests
from lxml import  html
import pandas as pd   # 把数据存储为表格
from matplotlib import pyplot as plt

plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 目标站点地址
def spider_dangdang(isbn):
    book_list=[]
    url = 'http://search.dangdang.com/?key={}&act=input'.format(isbn)
    headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    resp = requests.get(url, headers=headers)
    html_data = resp.text

#  将html页面写入本地
#     with open('dangdang.html', 'w', encoding='utf-8') as f:
#         f.write(html_data)
    #提取目标站信息
    selector = html.fromstring(html_data)
    ul_list = selector.xpath('//div[@id="search_nature_rg"]/ul/li')
    print('您好,共有{}家店铺售卖此图书'.format(len(ul_list)))

    # 遍历ul_list
    for li in ul_list:
        # 图书名称
        title = li.xpath('./a/@title')[0].strip()
        # print(title)
        # 图书购买链接
        link = li.xpath('a/@href')[0]
        # print(href)
        # 图书价格
        price = li.xpath('./p[@class="price"]/span[@class="search_now_price"]/text()')[0]
        price = float(price.replace('¥',''))
        # print(price)
        # 卖家名字
        store = li.xpath('./p[@class="search_shangjia"]/a/text()')
        store ='当当自营' if len(store) == 0 else store[0]
        # print(store)

        #添加一个商家的图书信息
        book_list.append({
            'title':title,
            'price': price,
            'link':link,
            'store':store
        })

    #按照价格进行排序
    book_list.sort(key=lambda x:x['price'])

    #遍历booklist
    for book in book_list:
        print(book)

    # 展示价格最低的前10家,柱状图
    # 店铺名称
    top10_store = [book_list[i] for i in range(10)]
    x = [x['store'] for x in top10_store]
    print(x)
    # 图书价格
    y = [x['price'] for x in top10_store]
    print(y)

    #plt.bar(x,y)
    plt.barh(x,y)  #柱子是横着的
    plt.show()
    # 存储成csv文件
    df = pd.DataFrame(book_list)
    df.to_csv('dangdang.csv')

spider_dangdang('9787115428028')


当当爬虫.png

4.实例2 抓取豆瓣网即将上映电影的相关信息

#请求远程端站点
import requests
from lxml import  html
import pandas as pd
from matplotlib import pyplot as plt

plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

counts={}
# 目标站点地址
def spider_douban():
    movie_list=[]
#str.format(),增强了字符串格式化的功能,format 函数可以接受不限个参数,位置可以不按顺序。
    url = 'https://movie.douban.com/cinema/later/chongqing/'.format()
#伪装成浏览器
    headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36"}
    resp = requests.get(url, headers=headers)
    html_data = resp.text

#  将html页面写入本地
#     with open('dangdang.html', 'w', encoding='utf-8') as f:
#         f.write(html_data)
    #提取目标站信息
    selector = html.fromstring(html_data)
    ul_list = selector.xpath('//div[@id="showing-soon"]/div/div')
    print('您好,共有{}部电影即将在重庆上映'.format(len(ul_list)))

    # 遍历ul_list
    for li in ul_list:
        # 电影名称
        title = li.xpath('./h3/a/text()')[0].strip()
        print(title)
        # 上映日期
        date = li.xpath('./ul/li/text()')[0]
        print(date)
        # 类型
        type = li.xpath('./ul/li/text()')[1]
        print(type)

        # 上映国家
        country = li.xpath('./ul/li/text()')[2]
        print(country)
        # 想看人数
        num = li.xpath('./ul/li/span/text()')[0]
        print(num)
        num = int(num.replace('人想看', ''))

        #添加电影信息
        movie_list.append({
            'title':title,
            'date': date,
            'type':type,
            'country':country,
            'num':num
        })

    #按照人数进行排序
    movie_list.sort(key=lambda x:x['num'],reverse=True)

    #遍历booklist
    for movie in movie_list:
        print(movie)

    #画饼图,把国家提取出来
    city=[]
    # 提取国家信息
    for country in movie_list:
        city.append((country['country']))

    # 将国家信息汇总
    for country in city:
        if len(country) <= 1:
            continue
        else:
            counts[country] = counts.get(country, 0) + 1
    items = list(counts.items())
    print(items)

    movie_name=[]
    people=[]
    for i in range(4):
        role, count = items[i]
        print(role, count)
        movie_name.append(role)  #国家名字
        people.append(count)  #每个国家的电影数量


     #绘制即将上映电影国家的占比图,饼图

    explode = [0.1, 0, 0, 0]
    plt.pie(people, explode=explode,labels=movie_name, shadow=True, autopct='%1.1f%%')
    plt.axis('equal')  # 保证饼状图是正圆,否则会有点扁
    plt.show()


    # 展示最想看的前5家,柱状图
    # 电影名称
    top5_movie = [movie_list[i] for i in range(5)]
    print(top5_movie)
    x = [x['title'] for x in top5_movie]
    print(x)
    # 想看人数
    y = [x['num'] for x in top5_movie]
    print(y)

    plt.bar(x,y)
    #plt.barh(x,y)
    plt.show()
    # 存储成csv文件
    # df = pd.DataFrame(movie_list)
    # df.to_csv('douban.csv')

spider_douban()


国家占比饼图.png
最想看电影前五.png

5.关于xpath的用法

https://www.cnblogs.com/lei0213/p/7506130.html

你可能感兴趣的:(学习Python的第四天之爬虫)