dyld和objc的关联

dyld(the dynamic link editor),也就是动态链接器,是内核在完成进程工作后,需要将需要的库和符号链接到Mach-O镜像文件中,而这个填充工作便是由动态链接器dyld完成的。

而我们知道程序的入口是main函数,dyld是如何一步步走到main函数,类又是何时加载到内存中的呢?这便是本文探究的内容。

关于Mach-O

Mach-O是Mach Object文件格式的缩写,是iOS或OS X系统下可执行文件类型的统称,它可以是可执行文件、目标代码、动态库、内核转储的文件格式。事实上我们开发运行程序生成的.app文件,打开内部便有Mach-O文件,这是系统内核运行程序是真正加载运行的东西。

Mach-O的文件类型

【Mach-O】有3种文件类型:Executable、Dylib、Bundle

  • Executable:app的二进制文件
  • Dylib:动态库的二进制文件
  • Bundle:一种特殊类型的动态库,无法对其进行链接,只能在Runtime运行时通过dlopen加载,可以在macOS上用于插件

Mach-O的文件结构

Mach-O文件分3个主要区域:Header、Load Commands、Data。

  • Header:保存了Mach-O的一些基本信息,包括运行平台、文件类型、LoadCommands指令的个数、指令总大小等等。
  • Load Command:Mach-O中最重要的元信息,紧跟在头文件信息之后,它清晰地告诉加载器如何处理二进制数据,有些命令是内核处理的,有些事动态链接器处理的,加载Mach-O文件会使用这部分数据确定内存分布以及相关加载命令,对系统内核加载器和动态链接器起指导作用,比如main()函数的加载地址,程序所需dyld的文件路径,以及相关依赖库的文件路径。
  • Data:每个segment的具体数据保存在这里,包含具体的代码、数据等等。
Mach-O结构图.png

App加载流程

我们知道程序的入口是mian()函数,我们可以在类的load方法打上断点,查看调用的堆栈信息。

(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 2.1
  * frame #0: 0x0000000100000f2c 消息转发`+[Animal load](self=Animal, _cmd="load") at Animal.m:16:1
    frame #1: 0x00007fff6df5e560 libobjc.A.dylib`load_images + 1529
    frame #2: 0x000000010000b26c dyld`dyld::notifySingle(dyld_image_states, ImageLoader const*, ImageLoader::InitializerTimingList*) + 418
    frame #3: 0x000000010001efe9 dyld`ImageLoader::recursiveInitialization(ImageLoader::LinkContext const&, unsigned int, char const*, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 475
    frame #4: 0x000000010001d0b4 dyld`ImageLoader::processInitializers(ImageLoader::LinkContext const&, unsigned int, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 188
    frame #5: 0x000000010001d154 dyld`ImageLoader::runInitializers(ImageLoader::LinkContext const&, ImageLoader::InitializerTimingList&) + 82
    frame #6: 0x000000010000b6a8 dyld`dyld::initializeMainExecutable() + 199
    frame #7: 0x0000000100010bba dyld`dyld::_main(macho_header const*, unsigned long, int, char const**, char const**, char const**, unsigned long*) + 6667
    frame #8: 0x000000010000a227 dyld`dyldbootstrap::start(dyld3::MachOLoaded const*, int, char const**, dyld3::MachOLoaded const*, unsigned long*) + 453
    frame #9: 0x000000010000a025 dyld`_dyld_start + 37

可以看到,调用流程是从dyld的_dyld_start开始的。我们从官网上下载dyld的源码进行探究。(dyld下载地址)

_dyld_start

_dyld_start是由汇编代码编写的,入口在dyldStartup.s文件,尽管不同架构下有不同的实现,但通过注释我们可以知道_dyld_start调用了dyldbootstrap::start

#if __arm64__
    .text
    .align 2
    .globl __dyld_start
__dyld_start:
    ...

    // call dyldbootstrap::start(app_mh, argc, argv, dyld_mh, &startGlue)
    bl  __ZN13dyldbootstrap5startEPKN5dyld311MachOLoadedEiPPKcS3_Pm
    mov x16,x0                  // save entry point address in x16
#if __LP64__
    ldr     x1, [sp]
#else
    ldr     w1, [sp]
#endif

dyldbootstrap::start

//
//  This is code to bootstrap dyld.  This work in normally done for a program by dyld and crt.
//  In dyld we have to do this manually.
//
uintptr_t start(const dyld3::MachOLoaded* appsMachHeader, int argc, const char* argv[],
                const dyld3::MachOLoaded* dyldsMachHeader, uintptr_t* startGlue)
{

    // Emit kdebug tracepoint to indicate dyld bootstrap has started 
    dyld3::kdebug_trace_dyld_marker(DBG_DYLD_TIMING_BOOTSTRAP_START, 0, 0, 0, 0);

    // if kernel had to slide dyld, we need to fix up load sensitive locations
    // we have to do this before using any global variables
    rebaseDyld(dyldsMachHeader);

    // kernel sets up env pointer to be just past end of agv array
    const char** envp = &argv[argc+1];
    
    // kernel sets up apple pointer to be just past end of envp array
    const char** apple = envp;
    while(*apple != NULL) { ++apple; }
    ++apple;

    // set up random value for stack canary
    __guard_setup(apple);

#if DYLD_INITIALIZER_SUPPORT
    // run all C++ initializers inside dyld
    runDyldInitializers(argc, argv, envp, apple);
#endif

    // now that we are done bootstrapping dyld, call dyld's main
    uintptr_t appsSlide = appsMachHeader->getSlide();
    return dyld::_main((macho_header*)appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
}

dyldbootstrap命名空间在dyldInitialization.cpp中,在start函数中主要做了这3件事:

  1. dyld进行rebase操作,以修复为real pointer来运行
  2. 设置参数和环境变量
  3. 对Mach-O文件的header得到偏移量appsSlide,然后调用了dyld命名空间下的_main方法

dyld::_main

//
// Entry point for dyld.  The kernel loads dyld and jumps to __dyld_start which
// sets up some registers and call this function.
//
// Returns address of main() in target program which __dyld_start jumps to
//
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
    if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
        launchTraceID = dyld3::kdebug_trace_dyld_duration_start(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, (uint64_t)mainExecutableMH, 0, 0);
    }

    //Check and see if there are any kernel flags
    dyld3::BootArgs::setFlags(hexToUInt64(_simple_getenv(apple, "dyld_flags"), nullptr));

    // Grab the cdHash of the main executable from the environment
    uint8_t mainExecutableCDHashBuffer[20];
    const uint8_t* mainExecutableCDHash = nullptr;
    if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
        mainExecutableCDHash = mainExecutableCDHashBuffer;

#if !TARGET_OS_SIMULATOR
    // Trace dyld's load
    notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file"));
    // Trace the main executable's load
    notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));
#endif

    uintptr_t result = 0;
    sMainExecutableMachHeader = mainExecutableMH;
    sMainExecutableSlide = mainExecutableSlide;


    // Set the platform ID in the all image infos so debuggers can tell the process type
    // FIXME: This can all be removed once we make the kernel handle it in rdar://43369446
    if (gProcessInfo->version >= 16) {
        __block bool platformFound = false;
        ((dyld3::MachOFile*)mainExecutableMH)->forEachSupportedPlatform(^(dyld3::Platform platform, uint32_t minOS, uint32_t sdk) {
            if (platformFound) {
                halt("MH_EXECUTE binaries may only specify one platform");
            }
            gProcessInfo->platform = (uint32_t)platform;
            platformFound = true;
        });
        if (gProcessInfo->platform == (uint32_t)dyld3::Platform::unknown) {
            // There were no platforms found in the binary. This may occur on macOS for alternate toolchains and old binaries.
            // It should never occur on any of our embedded platforms.
#if __MAC_OS_X_VERSION_MIN_REQUIRED
            gProcessInfo->platform = (uint32_t)dyld3::Platform::macOS;
#else
            halt("MH_EXECUTE binaries must specify a minimum supported OS version");
#endif
        }
    }

#if __MAC_OS_X_VERSION_MIN_REQUIRED
    // Check to see if we need to override the platform
    const char* forcedPlatform = _simple_getenv(envp, "DYLD_FORCE_PLATFORM");
    if (forcedPlatform) {
        if (strncmp(forcedPlatform, "6", 1) != 0) {
            halt("DYLD_FORCE_PLATFORM is only supported for platform 6");
        }
        const dyld3::MachOFile* mf = (dyld3::MachOFile*)sMainExecutableMachHeader;
        if (mf->allowsAlternatePlatform()) {
            gProcessInfo->platform = PLATFORM_IOSMAC;
        }
    }

    // if this is host dyld, check to see if iOS simulator is being run
    const char* rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH");
    if ( (rootPath != NULL) ) {
        // look to see if simulator has its own dyld
        char simDyldPath[PATH_MAX]; 
        strlcpy(simDyldPath, rootPath, PATH_MAX);
        strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX);
        int fd = my_open(simDyldPath, O_RDONLY, 0);
        if ( fd != -1 ) {
            const char* errMessage = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue, &result);
            if ( errMessage != NULL )
                halt(errMessage);
            return result;
        }
    }
    else {
        ((dyld3::MachOFile*)mainExecutableMH)->forEachSupportedPlatform(^(dyld3::Platform platform, uint32_t minOS, uint32_t sdk) {
            if ( dyld3::MachOFile::isSimulatorPlatform(platform) )
                halt("attempt to run simulator program outside simulator (DYLD_ROOT_PATH not set)");
        });
    }
#endif

    CRSetCrashLogMessage("dyld: launch started");

    setContext(mainExecutableMH, argc, argv, envp, apple);

    // Pickup the pointer to the exec path.
    sExecPath = _simple_getenv(apple, "executable_path");

    //  Remove interim apple[0] transition code from dyld
    if (!sExecPath) sExecPath = apple[0];

#if __IPHONE_OS_VERSION_MIN_REQUIRED && !TARGET_OS_SIMULATOR
    //  kernel is not passing a real path for main executable
    if ( strncmp(sExecPath, "/var/containers/Bundle/Application/", 35) == 0 ) {
        if ( char* newPath = (char*)malloc(strlen(sExecPath)+10) ) {
            strcpy(newPath, "/private");
            strcat(newPath, sExecPath);
            sExecPath = newPath;
        }
    }
#endif

    if ( sExecPath[0] != '/' ) {
        // have relative path, use cwd to make absolute
        char cwdbuff[MAXPATHLEN];
        if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
            // maybe use static buffer to avoid calling malloc so early...
            char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
            strcpy(s, cwdbuff);
            strcat(s, "/");
            strcat(s, sExecPath);
            sExecPath = s;
        }
    }

    // Remember short name of process for later logging
    sExecShortName = ::strrchr(sExecPath, '/');
    if ( sExecShortName != NULL )
        ++sExecShortName;
    else
        sExecShortName = sExecPath;

    configureProcessRestrictions(mainExecutableMH, envp);

    // Check if we should force dyld3.  Note we have to do this outside of the regular env parsing due to AMFI
    if ( dyld3::internalInstall() ) {
        if (const char* useClosures = _simple_getenv(envp, "DYLD_USE_CLOSURES")) {
            if ( strcmp(useClosures, "0") == 0 ) {
                sClosureMode = ClosureMode::Off;
            } else if ( strcmp(useClosures, "1") == 0 ) {
#if __MAC_OS_X_VERSION_MIN_REQUIRED

#if __i386__
                // don't support dyld3 for 32-bit macOS
#else
                // Also don't support dyld3 for iOSMac right now
                if ( gProcessInfo->platform != PLATFORM_IOSMAC ) {
                    sClosureMode = ClosureMode::On;
                }
#endif // __i386__

#else
                sClosureMode = ClosureMode::On;
#endif // __MAC_OS_X_VERSION_MIN_REQUIRED
            } else {
                dyld::warn("unknown option to DYLD_USE_CLOSURES.  Valid options are: 0 and 1\n");
            }

        }
    }

#if __MAC_OS_X_VERSION_MIN_REQUIRED
    if ( !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache ) {
        pruneEnvironmentVariables(envp, &apple);
        // set again because envp and apple may have changed or moved
        setContext(mainExecutableMH, argc, argv, envp, apple);
    }
    else
#endif
    {
        checkEnvironmentVariables(envp);
        defaultUninitializedFallbackPaths(envp);
    }
#if __MAC_OS_X_VERSION_MIN_REQUIRED
    if ( gProcessInfo->platform == PLATFORM_IOSMAC ) {
        gLinkContext.rootPaths = parseColonList("/System/iOSSupport", NULL);
        gLinkContext.iOSonMac = true;
        if ( sEnv.DYLD_FALLBACK_LIBRARY_PATH == sLibraryFallbackPaths )
            sEnv.DYLD_FALLBACK_LIBRARY_PATH = sRestrictedLibraryFallbackPaths;
        if ( sEnv.DYLD_FALLBACK_FRAMEWORK_PATH == sFrameworkFallbackPaths )
            sEnv.DYLD_FALLBACK_FRAMEWORK_PATH = sRestrictedFrameworkFallbackPaths;
    }
    else if ( ((dyld3::MachOFile*)mainExecutableMH)->supportsPlatform(dyld3::Platform::driverKit) ) {
        gLinkContext.driverKit = true;
        gLinkContext.sharedRegionMode = ImageLoader::kDontUseSharedRegion;
    }
#endif
    if ( sEnv.DYLD_PRINT_OPTS )
        printOptions(argv);
    if ( sEnv.DYLD_PRINT_ENV ) 
        printEnvironmentVariables(envp);

    // Parse this envirionment variable outside of the regular logic as we want to accept
    // this on binaries without an entitelment
#if !TARGET_OS_SIMULATOR
    if ( _simple_getenv(envp, "DYLD_JUST_BUILD_CLOSURE") != nullptr ) {
#if TARGET_OS_IPHONE
        const char* tempDir = getTempDir(envp);
        if ( (tempDir != nullptr) && (geteuid() != 0) ) {
            // Use realpath to prevent something like TMPRIR=/tmp/../usr/bin
            char realPath[PATH_MAX];
            if ( realpath(tempDir, realPath) != NULL )
                tempDir = realPath;
            if (strncmp(tempDir, "/private/var/mobile/Containers/", strlen("/private/var/mobile/Containers/")) == 0) {
                sJustBuildClosure = true;
            }
        }
#endif
        // If we didn't like the format of TMPDIR, just exit.  We don't want to launch the app as that would bring up the UI
        if (!sJustBuildClosure) {
            _exit(EXIT_SUCCESS);
        }
    }
#endif

    if ( sJustBuildClosure )
        sClosureMode = ClosureMode::On;
    getHostInfo(mainExecutableMH, mainExecutableSlide);

    // load shared cache
    checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
    if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
#if TARGET_OS_SIMULATOR
        if ( sSharedCacheOverrideDir)
            mapSharedCache();
#else
        mapSharedCache();
#endif
    }

    // If we haven't got a closure mode yet, then check the environment and cache type
    if ( sClosureMode == ClosureMode::Unset ) {
        // First test to see if we forced in dyld2 via a kernel boot-arg
        if ( dyld3::BootArgs::forceDyld2() ) {
            sClosureMode = ClosureMode::Off;
        } else if ( inDenyList(sExecPath) ) {
            sClosureMode = ClosureMode::Off;
        } else if ( sEnv.hasOverride ) {
            sClosureMode = ClosureMode::Off;
        } else if ( dyld3::BootArgs::forceDyld3() ) {
            sClosureMode = ClosureMode::On;
        } else {
            sClosureMode = getPlatformDefaultClosureMode();
        }
    }

#if !TARGET_OS_SIMULATOR
    if ( sClosureMode == ClosureMode::Off ) {
        if ( gLinkContext.verboseWarnings )
            dyld::log("dyld: not using closure because of DYLD_USE_CLOSURES or -force_dyld2=1 override\n");
    } else {
        const dyld3::closure::LaunchClosure* mainClosure = nullptr;
        dyld3::closure::LoadedFileInfo mainFileInfo;
        mainFileInfo.fileContent = mainExecutableMH;
        mainFileInfo.path = sExecPath;
        // FIXME: If we are saving this closure, this slice offset/length is probably wrong in the case of FAT files.
        mainFileInfo.sliceOffset = 0;
        mainFileInfo.sliceLen = -1;
        struct stat mainExeStatBuf;
        if ( ::stat(sExecPath, &mainExeStatBuf) == 0 ) {
            mainFileInfo.inode = mainExeStatBuf.st_ino;
            mainFileInfo.mtime = mainExeStatBuf.st_mtime;
        }
        // check for closure in cache first
        if ( sSharedCacheLoadInfo.loadAddress != nullptr ) {
            mainClosure = sSharedCacheLoadInfo.loadAddress->findClosure(sExecPath);
            if ( gLinkContext.verboseWarnings && (mainClosure != nullptr) )
                dyld::log("dyld: found closure %p (size=%lu) in dyld shared cache\n", mainClosure, mainClosure->size());
        }

        // We only want to try build a closure at runtime if its an iOS third party binary, or a macOS binary from the shared cache
        bool allowClosureRebuilds = false;
        if ( sClosureMode == ClosureMode::On ) {
            allowClosureRebuilds = true;
        } else if ( (sClosureMode == ClosureMode::PreBuiltOnly) && (mainClosure != nullptr) ) {
            allowClosureRebuilds = true;
        }

        if ( (mainClosure != nullptr) && !closureValid(mainClosure, mainFileInfo, mainExecutableCDHash, true, envp) )
            mainClosure = nullptr;

        // If we didn't find a valid cache closure then try build a new one
        if ( (mainClosure == nullptr) && allowClosureRebuilds ) {
            // if forcing closures, and no closure in cache, or it is invalid, check for cached closure
            if ( !sForceInvalidSharedCacheClosureFormat )
                mainClosure = findCachedLaunchClosure(mainExecutableCDHash, mainFileInfo, envp);
            if ( mainClosure == nullptr ) {
                // if  no cached closure found, build new one
                mainClosure = buildLaunchClosure(mainExecutableCDHash, mainFileInfo, envp);
            }
        }

        // exit dyld after closure is built, without running program
        if ( sJustBuildClosure )
            _exit(EXIT_SUCCESS);

        // try using launch closure
        if ( mainClosure != nullptr ) {
            CRSetCrashLogMessage("dyld3: launch started");
            bool launched = launchWithClosure(mainClosure, sSharedCacheLoadInfo.loadAddress, (dyld3::MachOLoaded*)mainExecutableMH,
                                              mainExecutableSlide, argc, argv, envp, apple, &result, startGlue);
            if ( !launched && allowClosureRebuilds ) {
                // closure is out of date, build new one
                mainClosure = buildLaunchClosure(mainExecutableCDHash, mainFileInfo, envp);
                if ( mainClosure != nullptr ) {
                    launched = launchWithClosure(mainClosure, sSharedCacheLoadInfo.loadAddress, (dyld3::MachOLoaded*)mainExecutableMH,
                                                 mainExecutableSlide, argc, argv, envp, apple, &result, startGlue);
                }
            }
            if ( launched ) {
                gLinkContext.startedInitializingMainExecutable = true;
#if __has_feature(ptrauth_calls)
                // start() calls the result pointer as a function pointer so we need to sign it.
                result = (uintptr_t)__builtin_ptrauth_sign_unauthenticated((void*)result, 0, 0);
#endif
                if (sSkipMain)
                    result = (uintptr_t)&fake_main;
                return result;
            }
            else {
                if ( gLinkContext.verboseWarnings ) {
                    dyld::log("dyld: unable to use closure %p\n", mainClosure);
                }
            }
        }
    }
#endif // TARGET_OS_SIMULATOR
    // could not use closure info, launch old way



    // install gdb notifier
    stateToHandlers(dyld_image_state_dependents_mapped, sBatchHandlers)->push_back(notifyGDB);
    stateToHandlers(dyld_image_state_mapped, sSingleHandlers)->push_back(updateAllImages);
    // make initial allocations large enough that it is unlikely to need to be re-alloced
    sImageRoots.reserve(16);
    sAddImageCallbacks.reserve(4);
    sRemoveImageCallbacks.reserve(4);
    sAddLoadImageCallbacks.reserve(4);
    sImageFilesNeedingTermination.reserve(16);
    sImageFilesNeedingDOFUnregistration.reserve(8);

#if !TARGET_OS_SIMULATOR
#ifdef WAIT_FOR_SYSTEM_ORDER_HANDSHAKE
    //  Add gating mechanism to dyld support system order file generation process
    WAIT_FOR_SYSTEM_ORDER_HANDSHAKE(dyld::gProcessInfo->systemOrderFlag);
#endif
#endif


    try {
        // add dyld itself to UUID list
        addDyldImageToUUIDList();

#if SUPPORT_ACCELERATE_TABLES
#if __arm64e__
        // Disable accelerator tables when we have threaded rebase/bind, which is arm64e executables only for now.
        if (sMainExecutableMachHeader->cpusubtype == CPU_SUBTYPE_ARM64E)
            sDisableAcceleratorTables = true;
#endif
        bool mainExcutableAlreadyRebased = false;
        if ( (sSharedCacheLoadInfo.loadAddress != nullptr) && !dylibsCanOverrideCache() && !sDisableAcceleratorTables && (sSharedCacheLoadInfo.loadAddress->header.accelerateInfoAddr != 0) ) {
            struct stat statBuf;
            if ( ::stat(IPHONE_DYLD_SHARED_CACHE_DIR "no-dyld2-accelerator-tables", &statBuf) != 0 )
                sAllCacheImagesProxy = ImageLoaderMegaDylib::makeImageLoaderMegaDylib(&sSharedCacheLoadInfo.loadAddress->header, sSharedCacheLoadInfo.slide, mainExecutableMH, gLinkContext);
        }

reloadAllImages:
#endif


    #if __MAC_OS_X_VERSION_MIN_REQUIRED
        gLinkContext.strictMachORequired = false;
        //  be less strict about old macOS mach-o binaries
        ((dyld3::MachOFile*)mainExecutableMH)->forEachSupportedPlatform(^(dyld3::Platform platform, uint32_t minOS, uint32_t sdk) {
            if ( (platform == dyld3::Platform::macOS) && (sdk >= DYLD_PACKED_VERSION(10,15,0)) ) {
                gLinkContext.strictMachORequired = true;
            }
        });
        if ( gLinkContext.iOSonMac )
            gLinkContext.strictMachORequired = true;
    #else
        // simulators, iOS, tvOS, watchOS, are always strict
        gLinkContext.strictMachORequired = true;
    #endif


        CRSetCrashLogMessage(sLoadingCrashMessage);
        // instantiate ImageLoader for main executable
        sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
        gLinkContext.mainExecutable = sMainExecutable;
        gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);

#if TARGET_OS_SIMULATOR
        // check main executable is not too new for this OS
        {
            if ( ! isSimulatorBinary((uint8_t*)mainExecutableMH, sExecPath) ) {
                throwf("program was built for a platform that is not supported by this runtime");
            }
            uint32_t mainMinOS = sMainExecutable->minOSVersion();

            // dyld is always built for the current OS, so we can get the current OS version
            // from the load command in dyld itself.
            uint32_t dyldMinOS = ImageLoaderMachO::minOSVersion((const mach_header*)&__dso_handle);
            if ( mainMinOS > dyldMinOS ) {
    #if TARGET_OS_WATCH
                throwf("app was built for watchOS %d.%d which is newer than this simulator %d.%d",
                        mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
                        dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
    #elif TARGET_OS_TV
                throwf("app was built for tvOS %d.%d which is newer than this simulator %d.%d",
                        mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
                        dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
    #else
                throwf("app was built for iOS %d.%d which is newer than this simulator %d.%d",
                        mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
                        dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
    #endif
            }
        }
#endif


    #if SUPPORT_ACCELERATE_TABLES
        sAllImages.reserve((sAllCacheImagesProxy != NULL) ? 16 : INITIAL_IMAGE_COUNT);
    #else
        sAllImages.reserve(INITIAL_IMAGE_COUNT);
    #endif

        // Now that shared cache is loaded, setup an versioned dylib overrides
    #if SUPPORT_VERSIONED_PATHS
        checkVersionedPaths();
    #endif


        // dyld_all_image_infos image list does not contain dyld
        // add it as dyldPath field in dyld_all_image_infos
        // for simulator, dyld_sim is in image list, need host dyld added
#if TARGET_OS_SIMULATOR
        // get path of host dyld from table of syscall vectors in host dyld
        void* addressInDyld = gSyscallHelpers;
#else
        // get path of dyld itself
        void*  addressInDyld = (void*)&__dso_handle;
#endif
        char dyldPathBuffer[MAXPATHLEN+1];
        int len = proc_regionfilename(getpid(), (uint64_t)(long)addressInDyld, dyldPathBuffer, MAXPATHLEN);
        if ( len > 0 ) {
            dyldPathBuffer[len] = '\0'; // proc_regionfilename() does not zero terminate returned string
            if ( strcmp(dyldPathBuffer, gProcessInfo->dyldPath) != 0 )
                gProcessInfo->dyldPath = strdup(dyldPathBuffer);
        }

        // load any inserted libraries
        if  ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
            for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) 
                loadInsertedDylib(*lib);
        }
        // record count of inserted libraries so that a flat search will look at 
        // inserted libraries, then main, then others.
        sInsertedDylibCount = sAllImages.size()-1;

        // link main executable
        gLinkContext.linkingMainExecutable = true;
#if SUPPORT_ACCELERATE_TABLES
        if ( mainExcutableAlreadyRebased ) {
            // previous link() on main executable has already adjusted its internal pointers for ASLR
            // work around that by rebasing by inverse amount
            sMainExecutable->rebase(gLinkContext, -mainExecutableSlide);
        }
#endif
        link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
        sMainExecutable->setNeverUnloadRecursive();
        if ( sMainExecutable->forceFlat() ) {
            gLinkContext.bindFlat = true;
            gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
        }

        // link any inserted libraries
        // do this after linking main executable so that any dylibs pulled in by inserted 
        // dylibs (e.g. libSystem) will not be in front of dylibs the program uses
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
                image->setNeverUnloadRecursive();
            }
            if ( gLinkContext.allowInterposing ) {
                // only INSERTED libraries can interpose
                // register interposing info after all inserted libraries are bound so chaining works
                for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                    ImageLoader* image = sAllImages[i+1];
                    image->registerInterposing(gLinkContext);
                }
            }
        }

        if ( gLinkContext.allowInterposing ) {
            //  dyld should support interposition even without DYLD_INSERT_LIBRARIES
            for (long i=sInsertedDylibCount+1; i < sAllImages.size(); ++i) {
                ImageLoader* image = sAllImages[i];
                if ( image->inSharedCache() )
                    continue;
                image->registerInterposing(gLinkContext);
            }
        }
    #if SUPPORT_ACCELERATE_TABLES
        if ( (sAllCacheImagesProxy != NULL) && ImageLoader::haveInterposingTuples() ) {
            // Accelerator tables cannot be used with implicit interposing, so relaunch with accelerator tables disabled
            ImageLoader::clearInterposingTuples();
            // unmap all loaded dylibs (but not main executable)
            for (long i=1; i < sAllImages.size(); ++i) {
                ImageLoader* image = sAllImages[i];
                if ( image == sMainExecutable )
                    continue;
                if ( image == sAllCacheImagesProxy )
                    continue;
                image->setCanUnload();
                ImageLoader::deleteImage(image);
            }
            // note: we don't need to worry about inserted images because if DYLD_INSERT_LIBRARIES was set we would not be using the accelerator table
            sAllImages.clear();
            sImageRoots.clear();
            sImageFilesNeedingTermination.clear();
            sImageFilesNeedingDOFUnregistration.clear();
            sAddImageCallbacks.clear();
            sRemoveImageCallbacks.clear();
            sAddLoadImageCallbacks.clear();
            sAddBulkLoadImageCallbacks.clear();
            sDisableAcceleratorTables = true;
            sAllCacheImagesProxy = NULL;
            sMappedRangesStart = NULL;
            mainExcutableAlreadyRebased = true;
            gLinkContext.linkingMainExecutable = false;
            resetAllImages();
            goto reloadAllImages;
        }
    #endif

        // apply interposing to initial set of images
        for(int i=0; i < sImageRoots.size(); ++i) {
            sImageRoots[i]->applyInterposing(gLinkContext);
        }
        ImageLoader::applyInterposingToDyldCache(gLinkContext);

        // Bind and notify for the main executable now that interposing has been registered
        uint64_t bindMainExecutableStartTime = mach_absolute_time();
        sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
        uint64_t bindMainExecutableEndTime = mach_absolute_time();
        ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
        gLinkContext.notifyBatch(dyld_image_state_bound, false);

        // Bind and notify for the inserted images now interposing has been registered
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
            }
        }
        
        //  do weak binding only after all inserted images linked
        sMainExecutable->weakBind(gLinkContext);
        gLinkContext.linkingMainExecutable = false;

        sMainExecutable->recursiveMakeDataReadOnly(gLinkContext);

        CRSetCrashLogMessage("dyld: launch, running initializers");
    #if SUPPORT_OLD_CRT_INITIALIZATION
        // Old way is to run initializers via a callback from crt1.o
        if ( ! gRunInitializersOldWay ) 
            initializeMainExecutable(); 
    #else
        // run all initializers
        initializeMainExecutable(); 
    #endif

        // notify any montoring proccesses that this process is about to enter main()
        notifyMonitoringDyldMain();
        if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
            dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
        }
        ARIADNEDBG_CODE(220, 1);

#if __MAC_OS_X_VERSION_MIN_REQUIRED
        if ( gLinkContext.driverKit ) {
            result = (uintptr_t)sEntryOveride;
            if ( result == 0 )
                halt("no entry point registered");
            *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
        }
        else
#endif
        {
            // find entry point for main executable
            result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
            if ( result != 0 ) {
                // main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
                if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
                    *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
                else
                    halt("libdyld.dylib support not present for LC_MAIN");
            }
            else {
                // main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
                result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
                *startGlue = 0;
            }
        }
#if __has_feature(ptrauth_calls)
        // start() calls the result pointer as a function pointer so we need to sign it.
        result = (uintptr_t)__builtin_ptrauth_sign_unauthenticated((void*)result, 0, 0);
#endif
    }
    catch(const char* message) {
        syncAllImages();
        halt(message);
    }
    catch(...) {
        dyld::log("dyld: launch failed\n");
    }

    CRSetCrashLogMessage("dyld2 mode");
#if !TARGET_OS_SIMULATOR
    if (sLogClosureFailure) {
        // We failed to launch in dyld3, but dyld2 can handle it. synthesize a crash report for analytics
        dyld3::syntheticBacktrace("Could not generate launchClosure, falling back to dyld2", true);
    }
#endif

    if (sSkipMain) {
        notifyMonitoringDyldMain();
        if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
            dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
        }
        ARIADNEDBG_CODE(220, 1);
        result = (uintptr_t)&fake_main;
        *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
    }
    
    return result;
}

这段代码较多,主要做了以下几件事情:

  1. 准备运行环境,准备Mach-O文件加载
  2. 使用mapSharedCache加载共享缓存
  3. 执行instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath)加载主程序
  4. 执行loadInsertedDylib加载插入的动态库
  5. link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1)链接主程序
  6. link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1)链接动态库
  7. sMainExecutable->weakBind(gLinkContext)绑定弱符号
  8. initializeMainExecutable()执行初始化方法
  9. 查找程序入口并返回main()

initializeMainExecutable

void initializeMainExecutable()
{
    // record that we've reached this step
    gLinkContext.startedInitializingMainExecutable = true;

    // run initialzers for any inserted dylibs
    ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
    initializerTimes[0].count = 0;
    const size_t rootCount = sImageRoots.size();
    if ( rootCount > 1 ) {
        for(size_t i=1; i < rootCount; ++i) {
            sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
        }
    }
    
    // run initializers for main executable and everything it brings up 
    sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
    
    // register cxa_atexit() handler to run static terminators in all loaded images when this process exits
    if ( gLibSystemHelpers != NULL ) 
        (*gLibSystemHelpers->cxa_atexit)(&runAllStaticTerminators, NULL, NULL);

    // dump info if requested
    if ( sEnv.DYLD_PRINT_STATISTICS )
        ImageLoader::printStatistics((unsigned int)allImagesCount(), initializerTimes[0]);
    if ( sEnv.DYLD_PRINT_STATISTICS_DETAILS )
        ImageLoaderMachO::printStatisticsDetails((unsigned int)allImagesCount(), initializerTimes[0]);
}

可以看到,这个方法里先执行了动态库sImageRoots的初始化方法runInitializers,再执行主程序sMainExecutablerunInitializers

我们继续跟进runInitializers方法。

runInitializers

void ImageLoader::runInitializers(const LinkContext& context, InitializerTimingList& timingInfo)
{
    uint64_t t1 = mach_absolute_time();
    mach_port_t thisThread = mach_thread_self();
    ImageLoader::UninitedUpwards up;
    up.count = 1;
    up.imagesAndPaths[0] = { this, this->getPath() };
    processInitializers(context, thisThread, timingInfo, up);
    context.notifyBatch(dyld_image_state_initialized, false);
    mach_port_deallocate(mach_task_self(), thisThread);
    uint64_t t2 = mach_absolute_time();
    fgTotalInitTime += (t2 - t1);
}

这里可以看到内部调用了processInitializers

processInitializers

void ImageLoader::processInitializers(const LinkContext& context, mach_port_t thisThread,
                                     InitializerTimingList& timingInfo, ImageLoader::UninitedUpwards& images)
{
    uint32_t maxImageCount = context.imageCount()+2;
    ImageLoader::UninitedUpwards upsBuffer[maxImageCount];
    ImageLoader::UninitedUpwards& ups = upsBuffer[0];
    ups.count = 0;
    // Calling recursive init on all images in images list, building a new list of
    // uninitialized upward dependencies.
    for (uintptr_t i=0; i < images.count; ++i) {
        images.imagesAndPaths[i].first->recursiveInitialization(context, thisThread, images.imagesAndPaths[i].second, timingInfo, ups);
    }
    // If any upward dependencies remain, init them.
    if ( ups.count > 0 )
        processInitializers(context, thisThread, timingInfo, ups);
}

这里为所有的镜像执行recursiveInitialization方法

recursiveInitialization

void ImageLoader::recursiveInitialization(const LinkContext& context, mach_port_t this_thread, const char* pathToInitialize,
                                          InitializerTimingList& timingInfo, UninitedUpwards& uninitUps)
{
    recursive_lock lock_info(this_thread);
    recursiveSpinLock(lock_info);

    if ( fState < dyld_image_state_dependents_initialized-1 ) {
        uint8_t oldState = fState;
        // break cycles
        fState = dyld_image_state_dependents_initialized-1;
        try {
            // initialize lower level libraries first
            for(unsigned int i=0; i < libraryCount(); ++i) {
                ImageLoader* dependentImage = libImage(i);
                if ( dependentImage != NULL ) {
                    // don't try to initialize stuff "above" me yet
                    if ( libIsUpward(i) ) {
                        uninitUps.imagesAndPaths[uninitUps.count] = { dependentImage, libPath(i) };
                        uninitUps.count++;
                    }
                    else if ( dependentImage->fDepth >= fDepth ) {
                        dependentImage->recursiveInitialization(context, this_thread, libPath(i), timingInfo, uninitUps);
                    }
                }
            }
            
            // record termination order
            if ( this->needsTermination() )
                context.terminationRecorder(this);

            // let objc know we are about to initialize this image
            uint64_t t1 = mach_absolute_time();
            fState = dyld_image_state_dependents_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
            
            // initialize this image
            bool hasInitializers = this->doInitialization(context);

            // let anyone know we finished initializing this image
            fState = dyld_image_state_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_initialized, this, NULL);
            
            if ( hasInitializers ) {
                uint64_t t2 = mach_absolute_time();
                timingInfo.addTime(this->getShortName(), t2-t1);
            }
        }
        catch (const char* msg) {
            // this image is not initialized
            fState = oldState;
            recursiveSpinUnLock();
            throw;
        }
    }
    
    recursiveSpinUnLock();
}

这里有两个关键方法:

  • context.notifySingle
  • this->doInitialization(context)

context.notifySingle

全局搜索notifySingle,它的实现如下

static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
    //dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
    std::vector* handlers = stateToHandlers(state, sSingleHandlers);
    if ( handlers != NULL ) {
        dyld_image_info info;
        info.imageLoadAddress   = image->machHeader();
        info.imageFilePath      = image->getRealPath();
        info.imageFileModDate   = image->lastModified();
        for (std::vector::iterator it = handlers->begin(); it != handlers->end(); ++it) {
            const char* result = (*it)(state, 1, &info);
            if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
                //fprintf(stderr, "  image rejected by handler=%p\n", *it);
                // make copy of thrown string so that later catch clauses can free it
                const char* str = strdup(result);
                throw str;
            }
        }
    }
    if ( state == dyld_image_state_mapped ) {
        //  Save load addr + UUID for images from outside the shared cache
        if ( !image->inSharedCache() ) {
            dyld_uuid_info info;
            if ( image->getUUID(info.imageUUID) ) {
                info.imageLoadAddress = image->machHeader();
                addNonSharedCacheImageUUID(info);
            }
        }
    }
    if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
        uint64_t t0 = mach_absolute_time();
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
        (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        uint64_t t1 = mach_absolute_time();
        uint64_t t2 = mach_absolute_time();
        uint64_t timeInObjC = t1-t0;
        uint64_t emptyTime = (t2-t1)*100;
        if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
            timingInfo->addTime(image->getShortName(), timeInObjC);
        }
    }
    // mach message csdlc about dynamically unloaded images
    if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
        notifyKernel(*image, false);
        const struct mach_header* loadAddress[] = { image->machHeader() };
        const char* loadPath[] = { image->getPath() };
        notifyMonitoringDyld(true, 1, loadAddress, loadPath);
    }
}

它的内部调用了sNotifyObjCInit,全局搜索sNotifyObjCInit,并没找到他的相关定义,实际他是一个函数指针,在registerObjCNotifiers方法中有关于它的赋值操作

void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
    // record functions to call
    sNotifyObjCMapped   = mapped;
    sNotifyObjCInit     = init;
    sNotifyObjCUnmapped = unmapped;

    // call 'mapped' function with all images mapped so far
    try {
        notifyBatchPartial(dyld_image_state_bound, true, NULL, false, true);
    }
    catch (const char* msg) {
        // ignore request to abort during registration
    }

    //  call 'init' function on all images already init'ed (below libSystem)
    for (std::vector::iterator it=sAllImages.begin(); it != sAllImages.end(); it++) {
        ImageLoader* image = *it;
        if ( (image->getState() == dyld_image_state_initialized) && image->notifyObjC() ) {
            dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
            (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        }
    }
}

接着搜索registerObjCNotifiers,发现它在_dyld_objc_notify_register中被调用,然而全局搜索,我们发现并没有在dyld有调用该方法,当我们可以在dyld_priv.h的在方法苹果写的这样一段关于registerObjCNotifiers的注释。

//
// Note: only for use by objc runtime
// Register handlers to be called when objc images are mapped, unmapped, and initialized.
// Dyld will call back the "mapped" function with an array of images that contain an objc-image-info section.
// Those images that are dylibs will have the ref-counts automatically bumped, so objc will no longer need to
// call dlopen() on them to keep them from being unloaded.  During the call to _dyld_objc_notify_register(),
// dyld will call the "mapped" function with already loaded objc images.  During any later dlopen() call,
// dyld will also call the "mapped" function.  Dyld will call the "init" function when dyld would be called
// initializers in that image.  This is when objc calls any +load methods in that image.
//
void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped);

可以看到,这是一个给objc运行时调用的方法。至此,我们得到一个结论objc通过_dyld_objc_notify_registerdyld中注册了一个3个回调方法:mapped、init、unmapped,而dyld会在执行初始化方法时通过notifySingle通知调用objc注册在这里的回调方法。

_objc_init

我们来到objc4-781源码中搜索_dyld_objc_notify_register,在objc-os.mm中找到它被调用的地方

// runtime + 类的信息
void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    environ_init();
    tls_init();
    static_init();
    runtime_init();
    exception_init();
    cache_init();
    _imp_implementationWithBlock_init();

    // 什么时候调用? images 镜像文件
    // map_images()
    // load_images()
    
    _dyld_objc_notify_register(&map_images, load_images, unmap_image);

#if __OBJC2__
    didCallDyldNotifyRegister = true;
#endif
}

可以看到sNotifyObjCInit赋值的就是objcload_images,接着我们在objc-runtime-new.mm中查看load_images的实现。

void
load_images(const char *path __unused, const struct mach_header *mh)
{
    if (!didInitialAttachCategories && didCallDyldNotifyRegister) {
        didInitialAttachCategories = true;
        loadAllCategories();
    }

    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

继续查看call_load_methods

void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}

接着查看call_class_loads()

static void call_class_loads(void)
{
    int i;
    
    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
    
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
        if (!cls) continue; 

        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        (*load_method)(cls, @selector(load));
    }
    
    // Destroy the detached list.
    if (classes) free(classes);
}

看到(*load_method)(cls, @selector(load));我们也就知道,为什么类方法的load会在main()之前。

那么_objc_init是何时调用的用的呢?我们在dyldobjc源码库中都没找到相关调用,可以猜测这是其他库调用的,我们在一个可执行工程中打上_objc_init的符号断点探究他的调用堆栈。

3292DE98-9549-4F6B-9098-98A9CB75492C.png

可以看到,当初始化方法执行到doInitialization时,会调用libSystemlibSystem_initializerr方法,而这个方法又会调用libdispatchlibdispatch_init方法,libdispatch_init又调用_os_object_init进而调用_objc_init,至此,关于dyld和objc的关系已经破案。

总结

本文主要通过程序的启动到main函数执行的过程,探究dyldobjc之间的联系,它们之间可以用下图表示:

dyld与objc关系图.png

你可能感兴趣的:(dyld和objc的关联)