PathReuseDecider 是lanefollow 场景下,所调用的第 1 个 task,它的作用主要是对车辆换道状态进行管理,即对车辆换道状态(IN_CHANGE_LANE 换道中、CHANGE_LANE_FINISHED 换道结束、CHANGE_LANE_FAILED 换道失败)之间的转换进行管理
入口参数:frame、current_reference_line_info
该decider的主要操作是对记录车此时的换道状态,并不决定车是否换道。车的换道状态信息存于 injector_->planning_context()->mutable_planning_status()->mutable_change_lane()中,此dicider中出现最多的就是以下代码
void LaneChangeDecider::UpdateStatus(double timestamp,
ChangeLaneStatus::Status status_code,
const std::string& path_id) {
auto* lane_change_status = injector_->planning_context()
->mutable_planning_status()
->mutable_change_lane();
lane_change_status->set_timestamp(timestamp);
lane_change_status->set_path_id(path_id);
lane_change_status->set_status(status_code);
}
可以看到,UpdateStatus()的操作就是通过lane_change_status指针来对车辆换道状态进行实时更新。更新逻辑如下:
//通过frame拿到车辆此时所在的区域参考线个数
std::list* reference_line_info =frame->mutable_reference_line_info();
//没有参考线就return,因为apollo的后续所有tasks全部都依赖参考线来做轨迹规划
if (reference_line_info->empty())
{
const std::string msg = "Reference lines empty.";
AERROR << msg;
return Status(ErrorCode::PLANNING_ERROR, msg);
}
...(省略的地方最后讲)
//判断参考线数量
bool has_change_lane = reference_line_info->size() > 1;
//如果只有一条参考线(比如往某个方向只有一条车道),那就通过updatestatus将车辆状态设置为CHANGE_LANE_FINISHED,这也符合我们认知,单向只有一条车道,还换什么道,所以车辆就该一直处于换到结束的状态
if (!has_change_lane) {
const auto& path_id = reference_line_info->front().Lanes().Id();
if (prev_status->status() == ChangeLaneStatus::CHANGE_LANE_FINISHED) {
} else if (prev_status->status() == ChangeLaneStatus::IN_CHANGE_LANE) {
UpdateStatus(now, ChangeLaneStatus::CHANGE_LANE_FINISHED, path_id);
} else if (prev_status->status() == ChangeLaneStatus::CHANGE_LANE_FAILED) {
} else {
const std::string msg =
absl::StrCat("Unknown state: ", prev_status->ShortDebugString());
AERROR << msg;
return Status(ErrorCode::PLANNING_ERROR, msg);
}
return Status::OK();
}
//下面的else处理不止一条参考线的情况,正常道路都不止一条参考线,就连我们家小县城的马路都是单向3车道。主要逻辑为状态切换,实际操作还是通过updatestatus来实时更新车辆的换道状态。
else {
auto current_path_id = GetCurrentPathId(*reference_line_info);
if (current_path_id.empty()) {
const std::string msg = "The vehicle is not on any reference line";
AERROR << msg;
return Status(ErrorCode::PLANNING_ERROR, msg);
}
if (prev_status->status() == ChangeLaneStatus::IN_CHANGE_LANE) {
if (prev_status->path_id() == current_path_id) {
PrioritizeChangeLane(true, reference_line_info);
} else {
// RemoveChangeLane(reference_line_info);
PrioritizeChangeLane(false, reference_line_info);
ADEBUG << "removed change lane.";
UpdateStatus(now, ChangeLaneStatus::CHANGE_LANE_FINISHED,
current_path_id);
}
return Status::OK();
} else if (prev_status->status() == ChangeLaneStatus::CHANGE_LANE_FAILED) {
// TODO(SHU): add an optimization_failure counter to enter
// change_lane_failed status
if (now - prev_status->timestamp() <
lane_change_decider_config.change_lane_fail_freeze_time()) {
// RemoveChangeLane(reference_line_info);
PrioritizeChangeLane(false, reference_line_info);
ADEBUG << "freezed after failed";
} else {
UpdateStatus(now, ChangeLaneStatus::IN_CHANGE_LANE, current_path_id);
ADEBUG << "change lane again after failed";
}
return Status::OK();
} else if (prev_status->status() ==
ChangeLaneStatus::CHANGE_LANE_FINISHED) {
if (now - prev_status->timestamp() <
lane_change_decider_config.change_lane_success_freeze_time()) {
// RemoveChangeLane(reference_line_info);
PrioritizeChangeLane(false, reference_line_info);
ADEBUG << "freezed after completed lane change";
} else {
PrioritizeChangeLane(true, reference_line_info);
UpdateStatus(now, ChangeLaneStatus::IN_CHANGE_LANE, current_path_id);
ADEBUG << "change lane again after success";
}
} else {
const std::string msg =
absl::StrCat("Unknown state: ", prev_status->ShortDebugString());
AERROR << msg;
return Status(ErrorCode::PLANNING_ERROR, msg);
}
}
用图表示切换逻辑(在这里引用知乎的一张图)
PrioritizeChangeLane(const bool is_prioritize_change_lane,std::list
//当is_prioritize_change_lane为true,则遍历存储referenceLineInfo的链表,把
//当前车辆不位于的的那条(俗称换到参考线)放到链表的第一个位置
//当is_prioritize_change_lane为false,则遍历存储referenceLineInfo的链表,把
//当前车辆所位于的的那条放到链表的第一个位置
//我很纳闷,这里的形参reference_line_info是从frame类里面拿来的,你在这里任意调换
//referenceLineInfo的位置,就不怕public_road_planner那边对参考线进行遍历的功能吗?
//还有,将referenceLineInfo在链表中的位置来回换的目的我还不清楚,个人粗浅的认为
//此PrioritizeChangeLane()功能意义不大
void LaneChangeDecider::PrioritizeChangeLane(
const bool is_prioritize_change_lane,
std::list* reference_line_info) const {
if (reference_line_info->empty()) {
AERROR << "Reference line info empty";
return;
}
const auto& lane_change_decider_config = config_.lane_change_decider_config();
// TODO(SHU): disable the reference line order change for now
if (!lane_change_decider_config.enable_prioritize_change_lane()) {
return;
}
auto iter = reference_line_info->begin();
while (iter != reference_line_info->end()) {
ADEBUG << "iter->IsChangeLanePath(): " << iter->IsChangeLanePath();
/* is_prioritize_change_lane == true: prioritize change_lane_reference_line
is_prioritize_change_lane == false: prioritize
non_change_lane_reference_line */
if ((is_prioritize_change_lane && iter->IsChangeLanePath()) ||
(!is_prioritize_change_lane && !iter->IsChangeLanePath())) {
ADEBUG << "is_prioritize_change_lane: " << is_prioritize_change_lane;
ADEBUG << "iter->IsChangeLanePath(): " << iter->IsChangeLanePath();
break;
}
++iter;
}
reference_line_info->splice(reference_line_info->begin(),
*reference_line_info, iter);
ADEBUG << "reference_line_info->IsChangeLanePath(): "
<< reference_line_info->begin()->IsChangeLanePath();
}
上文...省略的地方解析:
//当配置文件强制要求换道,即lane_change_decider_config.reckless_change_lane()为true,
//则调用PrioritizeChangeLane(true, reference_line_info),将换道参考线放到链表第一位,
//直接return true。好奇连车的换道状态都不设置了吗?直接return了
if (lane_change_decider_config.reckless_change_lane()) {
//若第一个参数为true,则将reference_line_info中的第一个变道车道参考线调到第一位
//若第一个参数为false,则将reference_line_info中的第一个非变道车道参考线调到第一位
PrioritizeChangeLane(true, reference_line_info);
return Status::OK();
}
//此处判断传进来的referenceLineinfo是否是变道参考线,如果是则通过
//IsClearToChangeLane()检查该参考线是否满足变道条件,
//IsClearToChangeLane只考虑传入的参考线上的动态障碍物,不考虑虚的和静态的障碍物。疑点:为什么只/考虑动态障碍物?
if (current_reference_line_info->IsChangeLanePath()) {
//获取reference_line_info中存储的所有动态obstacle,一一的遍历这些obstacle
//如果该障碍物不再reference_line_info所在的车道中,则不考虑
//对于在此车道范围内的obstacle,通过分析该障碍物的位置与运动方向,结合车辆的位置来判断是否iscleartochangelane
prev_status->set_is_clear_to_change_lane(
IsClearToChangeLane(current_reference_line_info));
}
//头次进入task,车道换道状态应该为空,默认设置为换道结束状态
if (!prev_status->has_status()) {
UpdateStatus(now, ChangeLaneStatus::CHANGE_LANE_FINISHED,
GetCurrentPathId(*reference_line_info));//获取非变道lane的id
prev_status->set_last_succeed_timestamp(now);
return Status::OK();
}
IsClearToChangeLane()解析:
//调选出位于该referenceline上的动态障碍物,结合障碍物的运动方向和车的运动方向,
//检查每个障碍物与车的前后距离,看是否都满足安全阈值。只要有一个动态障碍物不满足条件
//该referenceline就不满足换道条件。prev_status->set_is_clear_to_change_lane(false)
bool LaneChangeDecider::IsClearToChangeLane(
ReferenceLineInfo* reference_line_info) {
//车辆轮廓起点
double ego_start_s = reference_line_info->AdcSlBoundary().start_s();
//车辆轮廓终点
double ego_end_s = reference_line_info->AdcSlBoundary().end_s();
double ego_v =
std::abs(reference_line_info->vehicle_state().linear_velocity());
for (const auto* obstacle : reference_line_info->path_decision()->obstacles().Items()) {
if (obstacle->IsVirtual() || obstacle->IsStatic()) {
ADEBUG << "skip one virtual or static obstacle";
continue;
}
double start_s = std::numeric_limits::max();
double end_s = -std::numeric_limits::max();
double start_l = std::numeric_limits::max();
double end_l = -std::numeric_limits::max();
for (const auto& p : obstacle->PerceptionPolygon().points()) {
SLPoint sl_point;
reference_line_info->reference_line().XYToSL(p, &sl_point);
start_s = std::fmin(start_s, sl_point.s());
end_s = std::fmax(end_s, sl_point.s());
start_l = std::fmin(start_l, sl_point.l());
end_l = std::fmax(end_l, sl_point.l());
}
if (reference_line_info->IsChangeLanePath()) {
double left_width(0), right_width(0);
reference_line_info->mutable_reference_line()->GetLaneWidth(
(start_s + end_s) * 0.5, &left_width, &right_width);
//只考虑在reference_line_info所在的车道的障碍物
if (end_l < -right_width || start_l > left_width) {
continue;
}
}
// Raw estimation on whether same direction with ADC or not based on
// prediction trajectory
bool same_direction = true;
if (obstacle->HasTrajectory()) {
double obstacle_moving_direction =
obstacle->Trajectory().trajectory_point(0).path_point().theta();
const auto& vehicle_state = reference_line_info->vehicle_state();
double vehicle_moving_direction = vehicle_state.heading();
if (vehicle_state.gear() == canbus::Chassis::GEAR_REVERSE) {
vehicle_moving_direction =
common::math::NormalizeAngle(vehicle_moving_direction + M_PI);
}
double heading_difference = std::abs(common::math::NormalizeAngle(
obstacle_moving_direction - vehicle_moving_direction));
same_direction = heading_difference < (M_PI / 2.0);
}
// TODO(All) move to confs
static constexpr double kSafeTimeOnSameDirection = 3.0;
static constexpr double kSafeTimeOnOppositeDirection = 5.0;
static constexpr double kForwardMinSafeDistanceOnSameDirection = 10.0;
static constexpr double kBackwardMinSafeDistanceOnSameDirection = 10.0;
static constexpr double kForwardMinSafeDistanceOnOppositeDirection = 50.0;
static constexpr double kBackwardMinSafeDistanceOnOppositeDirection = 1.0;
static constexpr double kDistanceBuffer = 0.5;
double kForwardSafeDistance = 0.0;
double kBackwardSafeDistance = 0.0;
if (same_direction) {
kForwardSafeDistance =
std::fmax(kForwardMinSafeDistanceOnSameDirection,
(ego_v - obstacle->speed()) * kSafeTimeOnSameDirection);
kBackwardSafeDistance =
std::fmax(kBackwardMinSafeDistanceOnSameDirection,
(obstacle->speed() - ego_v) * kSafeTimeOnSameDirection);
} else {
kForwardSafeDistance =
std::fmax(kForwardMinSafeDistanceOnOppositeDirection,
(ego_v + obstacle->speed()) * kSafeTimeOnOppositeDirection);
kBackwardSafeDistance = kBackwardMinSafeDistanceOnOppositeDirection;
}
if (HysteresisFilter(ego_start_s - end_s, kBackwardSafeDistance,
kDistanceBuffer, obstacle->IsLaneChangeBlocking()) &&
HysteresisFilter(start_s - ego_end_s, kForwardSafeDistance,
kDistanceBuffer, obstacle->IsLaneChangeBlocking())) {
reference_line_info->path_decision()
->Find(obstacle->Id())
->SetLaneChangeBlocking(true);
ADEBUG << "Lane Change is blocked by obstacle" << obstacle->Id();
return false;
} else {
reference_line_info->path_decision()
->Find(obstacle->Id())
->SetLaneChangeBlocking(false);
}
}
return true;
}
总结与疑问:
lane_change_decider,我觉得应该叫车辆换道状态检测器,因为该decider通篇都在通过UpdateStatus来对injector_->planning_context()->mutable_planning_status()
->mutable_change_lane()信息进行实时更新。当然,顺便对proc传进来的current_reference_line_info通过IsClearToChangeLane()做了是否具备换道条件检测,是的话就额外的将injector_->planning_context()->mutable_planning_status()
->mutable_change_lane()->set_is_clear_to_change_lane设置为true,表面车辆此时周围有可以换道的参考线。这一信息很重要,后面的path_bound_decider会依据此标志位来确定regular_path_bound。
该决策器还有一个重点就是多参考线的换道逻辑状态图,这里有疑点:
else if (prev_status->status() ==
ChangeLaneStatus::CHANGE_LANE_FINISHED) {
if (now - prev_status->timestamp() <
lane_change_decider_config.change_lane_success_freeze_time()) {
// RemoveChangeLane(reference_line_info);
PrioritizeChangeLane(false, reference_line_info);
ADEBUG << "freezed after completed lane change";
} else {
//为什么CHANGE_LANE_FINISHED结束后,过个一定时间,又要切换到IN_CHANGE_LANE,
//就不能消停点吗?
PrioritizeChangeLane(true, reference_line_info);
UpdateStatus(now, ChangeLaneStatus::IN_CHANGE_LANE, current_path_id);
ADEBUG << "change lane again after success";
}
图片链接:Apollo规划模块详解(五):算法实现-lane change decider - 知乎