YOLOv5、YOLOv8改进:SOCA注意力机制

    

目录

简介

2.YOLOv5使用SOCA注意力机制 

2.1增加以下SOCA.yaml文件

2.2common.py配置

2.3yolo.py配置


简介

注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。为了合理利用有限的视觉信息处理资源,人类需要选择视觉区域中的特定部分,然后集中关注它。例如,人们在阅读时,通常只有少量要被读取的词会被关注和处理。综上,注意力机制主要有两个方面:决定需要关注输入的哪部分;分配有限的信息处理资源给重要的部分。这几年有关attention的论文与日俱增,下图就显示了在包括CVPR、ICCV、ECCV、NeurIPS、ICML和ICLR在内的顶级会议中,与attention相关的论文数量的增加量。下面我将会分享Yolov5 v6.1如何添加注意力机制;

  今天介绍一篇CPVR19的Oral文章,用二阶注意力网络来进行单图像超分辨率。作者来自清华深研院,鹏城实验室,香港理工大学以及阿里巴巴达摩院。

文章地址
github code

文章的出发点:现存的基于CNN的模型仍然面临一些限制:

  1. 大多数基于CNN的SR方法没有充分利用原始LR图像的信息,导致相当低的性能
  2. 大多数CNN-based models主要专注于设计更深或是更宽的网络,以学习更有判别力的高层特征,却很少发掘层间特征的内在相关性,从而妨碍了CNN的表达能

文章的大体思路:提出了一个深的二阶注意力网络SAN,以获得更好的特征表达和特征相关性学习。特别地,提出了一个二阶通道注意力机制SOCA来进行相关性学习。同时,提出了一个non-locally增强残差组NLRG来捕获长距离空间内容信息。

在这里插入图片描述

在LSRAG的末端,有一个SOCA模块,即二阶通道注意力机制。

相比于SENet里面的通道attention使用的是一阶统计信息(通过全局平均池化),本SOCA探索了二阶特征统计的attention

YOLOv5、YOLOv8改进:SOCA注意力机制_第1张图片

2.YOLOv5使用SOCA注意力机制 

2.1增加以下SOCA.yaml文件

# YOLOv5  by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
   [-1, 1, SOCA, [1024]],

   [[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2.2common.py配置

./models/common.py文件增加以下模块

import numpy as np
import torch
from torch import nn
from torch.nn import init

from torch.autograd import Function

class Covpool(Function):
     @staticmethod
     def forward(ctx, input):
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         h = x.data.shape[2]
         w = x.data.shape[3]
         M = h*w
         x = x.reshape(batchSize,dim,M)
         I_hat = (-1./M/M)*torch.ones(M,M,device = x.device) + (1./M)*torch.eye(M,M,device = x.device)
         I_hat = I_hat.view(1,M,M).repeat(batchSize,1,1).type(x.dtype)
         y = x.bmm(I_hat).bmm(x.transpose(1,2))
         ctx.save_for_backward(input,I_hat)
         return y
     @staticmethod
     def backward(ctx, grad_output):
         input,I_hat = ctx.saved_tensors
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         h = x.data.shape[2]
         w = x.data.shape[3]
         M = h*w
         x = x.reshape(batchSize,dim,M)
         grad_input = grad_output + grad_output.transpose(1,2)
         grad_input = grad_input.bmm(x).bmm(I_hat)
         grad_input = grad_input.reshape(batchSize,dim,h,w)
         return grad_input

class Sqrtm(Function):
     @staticmethod
     def forward(ctx, input, iterN):
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         dtype = x.dtype
         I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
         normA = (1.0/3.0)*x.mul(I3).sum(dim=1).sum(dim=1)
         A = x.div(normA.view(batchSize,1,1).expand_as(x))
         Y = torch.zeros(batchSize, iterN, dim, dim, requires_grad = False, device = x.device)
         Z = torch.eye(dim,dim,device = x.device).view(1,dim,dim).repeat(batchSize,iterN,1,1)
         if iterN < 2:
            ZY = 0.5*(I3 - A)
            Y[:,0,:,:] = A.bmm(ZY)
         else:
            ZY = 0.5*(I3 - A)
            Y[:,0,:,:] = A.bmm(ZY)
            Z[:,0,:,:] = ZY
            for i in range(1, iterN-1):
               ZY = 0.5*(I3 - Z[:,i-1,:,:].bmm(Y[:,i-1,:,:]))
               Y[:,i,:,:] = Y[:,i-1,:,:].bmm(ZY)
               Z[:,i,:,:] = ZY.bmm(Z[:,i-1,:,:])
            ZY = 0.5*Y[:,iterN-2,:,:].bmm(I3 - Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]))
         y = ZY*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
         ctx.save_for_backward(input, A, ZY, normA, Y, Z)
         ctx.iterN = iterN
         return y
     @staticmethod
     def backward(ctx, grad_output):
         input, A, ZY, normA, Y, Z = ctx.saved_tensors
         iterN = ctx.iterN
         x = input
         batchSize = x.data.shape[0]
         dim = x.data.shape[1]
         dtype = x.dtype
         der_postCom = grad_output*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
         der_postComAux = (grad_output*ZY).sum(dim=1).sum(dim=1).div(2*torch.sqrt(normA))
         I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
         if iterN < 2:
            der_NSiter = 0.5*(der_postCom.bmm(I3 - A) - A.bmm(der_sacleTrace))
         else:
            dldY = 0.5*(der_postCom.bmm(I3 - Y[:,iterN-2,:,:].bmm(Z[:,iterN-2,:,:])) -
                          Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]).bmm(der_postCom))
            dldZ = -0.5*Y[:,iterN-2,:,:].bmm(der_postCom).bmm(Y[:,iterN-2,:,:])
            for i in range(iterN-3, -1, -1):
               YZ = I3 - Y[:,i,:,:].bmm(Z[:,i,:,:])
               ZY = Z[:,i,:,:].bmm(Y[:,i,:,:])
               dldY_ = 0.5*(dldY.bmm(YZ) - 
                         Z[:,i,:,:].bmm(dldZ).bmm(Z[:,i,:,:]) - 
                             ZY.bmm(dldY))
               dldZ_ = 0.5*(YZ.bmm(dldZ) - 
                         Y[:,i,:,:].bmm(dldY).bmm(Y[:,i,:,:]) -
                            dldZ.bmm(ZY))
               dldY = dldY_
               dldZ = dldZ_
            der_NSiter = 0.5*(dldY.bmm(I3 - A) - dldZ - A.bmm(dldY))
         grad_input = der_NSiter.div(normA.view(batchSize,1,1).expand_as(x))
         grad_aux = der_NSiter.mul(x).sum(dim=1).sum(dim=1)
         for i in range(batchSize):
             grad_input[i,:,:] += (der_postComAux[i] \
                                   - grad_aux[i] / (normA[i] * normA[i])) \
                                   *torch.ones(dim,device = x.device).diag()
         return grad_input, None

def CovpoolLayer(var):
    return Covpool.apply(var)

def SqrtmLayer(var, iterN):
    return Sqrtm.apply(var, iterN)

class SOCA(nn.Module):
    # second-order Channel attention
    def __init__(self, channel, reduction=8):
        super(SOCA, self).__init__()
        self.max_pool = nn.MaxPool2d(kernel_size=2)

        self.conv_du = nn.Sequential(
            nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size, C, h, w = x.shape  # x: NxCxHxW
        N = int(h * w)
        min_h = min(h, w)
        h1 = 1000
        w1 = 1000
        if h < h1 and w < w1:
            x_sub = x
        elif h < h1 and w > w1:
            W = (w - w1) // 2
            x_sub = x[:, :, :, W:(W + w1)]
        elif w < w1 and h > h1:
            H = (h - h1) // 2
            x_sub = x[:, :, H:H + h1, :]
        else:
            H = (h - h1) // 2
            W = (w - w1) // 2
            x_sub = x[:, :, H:(H + h1), W:(W + w1)]
        cov_mat = CovpoolLayer(x_sub) # Global Covariance pooling layer
        cov_mat_sqrt = SqrtmLayer(cov_mat,5) # Matrix square root layer( including pre-norm,Newton-Schulz iter. and post-com. with 5 iteration)
        cov_mat_sum = torch.mean(cov_mat_sqrt,1)
        cov_mat_sum = cov_mat_sum.view(batch_size,C,1,1)
        y_cov = self.conv_du(cov_mat_sum)
        return y_cov*x

  

2.3yolo.py配置

在 models/yolo.py文件夹下

  • 定位到parse_model函数中 
  • 对应位置 下方只需要新增以下代码
    elif m is SOCA:
        c1, c2 = ch[f], args[0]
        if c2 != no:
            c2 = make_divisible(c2 * gw, 8)
        args = [c1, *args[1:]]
    

修改完成

如有遇到不清楚的地方欢迎评论区留言

你可能感兴趣的:(YOLO改进,YOLO,人工智能,计算机视觉,深度学习)