1. 套路一:观察重要表型与感兴趣基因之间的关系。
比如观察KRAS有无突变两组之间,感兴趣基因的表达是否有差异。
1.1 整理数据:提取感兴趣基因和临床表型数据
expr <- exprs[exprs$symbol %in% c("Your Interesting Gene Symbol"),]
rownames(expr) <- expr$symbol
expr <- expr[,-1]
expr <- as.data.frame(t(expr))
str(expr)
expr$Source.Name <- rownames(expr)
comData <- merge(expr,pheno,by="Source.Name") #合并表达和表型数据
1.2 以表型为分组,观察感兴趣基因之间是否具有差异表达。
ibrary(reshape2)
library(gridExtra)
library(ggthemes)
library(ggplot2)
library(ggpubr)
library(ggsignif)
table(comData$Characteristics.krasmut.)
df <- comData[comData$Characteristics.krasmut. !="not available",]
table(df$Characteristics.krasmut.)
plot <- ggplot(df,aes(x=Characteristics.krasmut., y="Your Gene", fill=Characteristics.krasmut.))+
geom_boxplot(aes(fill=Characteristics.krasmut.), outlier.shape = NA)+
geom_jitter(size=0.1, alpha=0.2, position=position_jitter(0.3))+
stat_compare_means(label = "p.signif", method = "t.test", label.x = 1.5, label.y.npc = "top", hide.ns = TRUE, col="red")+
theme_pubclean() +
scale_x_discrete(name="")+
theme(plot.title = element_text(size = 13, face = "bold"),
legend.position = "right",
text = element_text(size = 13),
axis.title = element_text(face="bold"),
axis.text.x=element_text(size = 12, angle = 45, hjust = 1.0, vjust = 1.0))
plot
2. 套路二:生存分析
library(survival)
library(survminer)
library(ggthemes)
## remove the "not available" data
df <- comData[comData$Characteristics.os.delay. !="not available",]
df$os <- as.numeric(df$Characteristics.os.delay.)
df$event <- as.numeric(df$Characteristics.os.event.)
survi_cutoff <- surv_cutpoint(data = df, time = "os", event = "event",
variables = "Your gene")
summary(survi_cutoff)
sur_cut <- surv_categorize(survi_cutoff)
head(sur_cut)
sur_cut$os <- as.numeric(sur_cut$os)
sur_cut$event <- as.numeric(sur_cut$event)
fit <- survfit(Surv("os", "event") ~Your gene, data = sur_cut)
ggsurvplot(fit, data = sur_cat, conf.int = T, # 95%CI
size = 0.6, # change line size
pval = T, # p-value of log-rank test
risk.table = TRUE,
xlab=c("Overall survival(months)"),
ggtheme = theme_gray(), # theme_minimal() theme_gray() theme_classic() theme_bw()
legend.title="Your gene", legend.labs=c("High","Low") )
3. 套路三:ssgsva
3.1 make genelist and load expression data
## genelist
rm(list = ls())
library(GSVA)
library(GSEABase)
library(msigdbr)
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(limma)
library(readxl)
genelist <- read_excel("genelist.xlsx")
genelist <- as.data.frame(genelist)
pathway_list <- lapply(genelist, function(x) {
unique(na.omit(x))
})
## expression data
load("expr.Rdata")
row.names(expr) <- expr$symbol
exprs <- dplyr::select(expr, -symbol)
gsva <- gsva(as.matrix(exprs), pathway_list,method='ssgsea',
kcdf='Gaussian',abs.ranking=TRUE)
write.csv(gsva, file = "gsva.csv")
## setting group according your interesting gene expression
df <- exprs["Your Gene",]
df <- as.data.frame(t(df))
df$group <- ifelse(df$Your Gene > median(df$Your Gene), "High", "Low")
table(df$group)
gsva_matrix <- t(gsva)
## Make sure the samples are in the correct order
df <- df[rownames(gsva),]
gsva_matrix <- cbind(gsva_matrix,df)
3.2 make analysis according the gsva result
library(reshape2)
library(gridExtra)
library(ggthemes)
library(ggplot2)
library(ggpubr)
library(ggsignif)
table(gsva_matrix$group)
rt <- gsva_matrix[,c(1:29,31)]
df <- melt(rt, id.vars = "group", variable.name = "immuneCells",
value.name = "Expression")
df$group <- factor(df$group, levels=c('High','Low'))
plot <- ggplot(df,aes(x=immuneCells, y=Expression, fill=group))+
geom_boxplot(aes(fill=group), outlier.shape = NA)+
geom_jitter(size=0.1, alpha=0.2, position=position_jitter(0.3))+
#geom_signif(comparisons = compaired, map_signif_level = T)+
stat_compare_means(label = "p.signif", method = "t.test", label.x = 1.5, label.y.npc = "top", hide.ns = TRUE, col="red")+
theme_pubclean() +
scale_x_discrete(name="")+
theme(plot.title = element_text(size = 13, face = "bold"),
legend.position = "right",
text = element_text(size = 13),
axis.title = element_text(face="bold"),
axis.text.x=element_text(size = 12, angle = 45, hjust = 1.0, vjust = 1.0))
plot
4. 套路四:以单基因高低表达分组,limma差异分析
df <- exprs["Your Gene",]
df <- as.data.frame(t(df))
df$group <- ifelse(df$Your Gene > median(df$Your Gene), "High", "Low")
table(df$group)
library(limma)
design.factor <- factor(df$group, levels=c('Low','High'))
design.matrix <- model.matrix(~0+design.factor)
colnames(design.matrix) <- levels(design.factor)
design.matrix
fit <- lmFit(exprs, design.matrix)
cont.matrix <- makeContrasts(High-Low, levels=design.matrix)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)
DEG <- topTable(fit2,adjust="fdr",sort.by="B",number=Inf)
head(DEG)
DEG_filter <-subset(DEG, abs(logFC)>=1 & adj.P.Val<0.05)
dim(DEG_filter)
5. 套路五:GO、KEGG差异分析
library(DOSE)
library(GO.db)
library(org.Hs.eg.db)
library(GSEABase)
library(clusterProfiler)
## symbol ID transform to entre id
symbol=as.character(rownames(DEG_filter))
eg = bitr(symbol, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")
id = as.character(eg[,2])
head(id)
## MF
egomf <- enrichGO(gene = id,
OrgDb = org.Hs.eg.db,
ont = "MF",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = TRUE)
barplot(egomf, showCategory=15)
dotplot(egomf)
emapplot(egomf)
write.csv(egomf@result,"egomf.csv")
## CC
egocc <- enrichGO(gene = id,
OrgDb = org.Hs.eg.db,
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = TRUE)
barplot(egocc, showCategory=15)
dotplot(egocc)
write.csv(egocc@result,"egocc.csv")
## BP
egobp <- enrichGO(gene = id,
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.05,
qvalueCutoff = 0.05,
readable = TRUE)
barplot(egobp, showCategory=15)
dotplot(egobp)
emapplot(egobp)
write.csv(egobp@result,"egobp.csv")
kk <- enrichKEGG(gene = id,
organism = 'hsa',
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
qvalueCutoff = 0.05)
barplot(kk, showCategory=15)
dotplot(kk)
kk <- setReadable(kk, OrgDb = org.Hs.eg.db, keyType="ENTREZID")
write.csv(kk@result,"kegg.csv")
browseKEGG(kk, 'hsa04972')
6. 套路六:GSEA
6.1 对limma差异分析的结果,进行整理
symbol=as.character(rownames(DEG_filter))
eg = bitr(symbol, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")
id = as.character(eg[,2])
head(id)
is.data.frame(eg)
gene <- dplyr::distinct(eg, SYMBOL,.keep_all=TRUE)
DEG_filter$SYMBOL <- rownames(DEG_filter)
data_all_sort <- DEG_filter %>%
dplyr::inner_join(gene, by="SYMBOL") %>%
arrange(desc(logFC))
head(data_all_sort)
geneList = data_all_sort$logFC #把foldchange按照从大到小提取出来
names(geneList) <- data_all_sort$ENTREZID #给上面提取的foldchange加上对应上ENTREZID
head(geneList)
ge = DEG_filter$logFC
names(ge) = rownames(DEG_filter)
ge = sort(ge,decreasing = T)
head(ge)
6.2 GSEA
library(msigdbr)
GO_df = msigdbr(species = "Homo sapiens",category = "C5") %>%
dplyr::select(gene_symbol,gs_exact_source,gs_subcat)
dim(GO_df)
length(unique(KEGG_df$gs_exact_source)) # 通路数量
# GSEA
library(GSVA)
em <- GSEA(ge, TERM2GENE = GO_df)
gseaplot2(em, geneSetID = 1, title = em$Description[1])
7. 套路七:OncoScore文本挖掘,评分
8. 套路八:与重要基因的相关性分析(如免疫检查点基因)
9. 套路九:与单细胞测序数据结合
年后分享!
10. 套路十:oncomine,TIME,GEPIA等在线网站的使用
前九件套小编主要用于非TCGA数据的分析。