leetcode304. 二维区域和检索 - 矩阵不可变(java)

前缀和数组

  • 二维区域和检索 - 矩阵不可变
    • 题目描述
    • 前缀和
    • 代码演示
  • 一维数组前缀和

二维区域和检索 - 矩阵不可变

难度 - 中等
原题链接 - 二维区域和检索 - 矩阵不可变

题目描述

给定一个二维矩阵 matrix,以下类型的多个请求:
计算其子矩形范围内元素的总和,该子矩阵的 左上角 为 (row1, col1) ,右下角 为 (row2, col2) 。
实现 NumMatrix 类:
NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1) 、右下角 (row2, col2) 所描述的子矩阵的元素 总和 。

示例1:
leetcode304. 二维区域和检索 - 矩阵不可变(java)_第1张图片
输入:
[“NumMatrix”,“sumRegion”,“sumRegion”,“sumRegion”]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]
解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 1e5
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
最多调用 104 次 sumRegion 方法

leetcode304. 二维区域和检索 - 矩阵不可变(java)_第2张图片

前缀和

和一维数组类似.也是先定义一个前缀和数组,求出前缀和的值,然后调用区间值时,就可以用前缀和进行计算.
注意:前缀和数组下标从1开始.
leetcode304. 二维区域和检索 - 矩阵不可变(java)_第3张图片

代码演示

class NumMatrix {

    int[][] sums;

    public NumMatrix(int[][] matrix) {
        int m = matrix.length;
        if (m > 0) {
            int n = matrix[0].length;
            sums = new int[m + 1][n + 1];
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    sums[i + 1][j + 1] = sums[i][j + 1] + sums[i + 1][j] - sums[i][j] + matrix[i][j];
                }
            }
        }
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        return sums[row2 + 1][col2 + 1] - sums[row1][col2 + 1] - sums[row2 + 1][col1] + sums[row1][col1];
    }

}

一维数组前缀和

leetcode303. 区域和检索 - 数组不可变

你可能感兴趣的:(数据结构,算法,java,矩阵,java,线性代数,算法,leetcode,数据结构,排序算法)