- 【人工智能】微调的秘密武器:释放大模型的无限潜能
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在人工智能迅猛发展的今天,大规模语言模型(LLMs)以其强大的通用能力席卷各行各业。然而,如何让这些通用模型在特定领域或任务中发挥最大潜力?答案是微调(Fine-tuning)。本文深入探讨微调的理论基础、技术细节与实践方法,揭示其作为解锁大模型隐藏潜力
- 【面试宝典】【大模型入门】【模型微调】
曾小文
人工智能深度学习机器学习
面试热点科普:监督微调vs无监督微调,有啥不一样?在大模型时代(比如BERT、GPT)里,我们经常听到“预训练+微调”的范式。但你可能会疑惑——监督微调、无监督微调,到底有啥区别?用的场景一样吗?今天这篇,带你5分钟搞懂这对“孪生兄弟”的异同✅1.术语定义名称定义说明预训练(Pretraining)在大规模通用数据上训练模型,学习“通用知识”,比如语言规律、语义表示。微调(Fine-tuning)
- 中文工单分类模型选择
SugarPPig
人工智能分类人工智能数据挖掘
采用基于预训练模型的微调(Fine-tuning)方案来做中文工单分类,这是非常明智的选择,因为预训练模型已经在大量中文语料上学习了丰富的语言知识,能大幅提升分类效果。在HuggingFace上,针对中文文本分类,我为你推荐以下最合适的模型:最推荐的模型:BERT-base-chinese模型名称(HuggingFaceID):google-bert/bert-base-chinese为什么推荐它
- LLM模型的一些思考
巴基海贼王
nlp
对通用LLM模型进行Fine-tuning操作(SFT,supervisedfinetuning),带来的影响往往是有害的?从表象看,使用领域数据对LLM做Fine-tuning,通常会造成灾难性的“灾难遗忘”问题。简单点儿说,SFT在赋予对领域知识理解能力的同时,由于修正模型参数,导致模型遗忘之前学会的某些知识。目前的“智能=压缩”的理论是否正确?LLM的压缩能力是否可以拆解成单个神经元的“压缩
- RAG 和微调如何抉择
成都犀牛
深度学习人工智能机器学习pytorch
要选择RAG(Retrieval-AugmentedGeneration)还是微调(Fine-tuning),或者两者结合,主要取决于如下数据特性应用场景资源限制模型行为的控制需求RAGvs.微调:如何选择?特性/维度RAG(检索增强生成)微调(Fine-tuning)数据特性知识不断变化/更新、信息量大、需要引用来源、数据隐私性高。数据领域特定、格式特殊、语言风格独特、知识相对稳定。知识来源外部
- LoRA、QLoRA是什么
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
人工智能机器学习深度学习
一:LoRA(Low-RankAdaptation,低秩适应)是一种高效的大模型参数微调技术,由Meta在2021年提出。它通过冻结预训练模型参数,仅训练少量新增的低秩矩阵,大幅减少了需要训练的参数量,同时保持接近全参数微调的效果。为什么需要LoRA?传统的全参数微调(Fine-tuning)需要更新大型语言模型的所有参数(如GPT-3有1750亿参数),这带来两个核心问题:计算资源需求极高:需要
- AI模型微调完整学习方案:从入门到精通
奔四的程序猿
大模型微调人工智能学习
引言随着大语言模型(LLM)技术的快速发展,微调模型以适应特定任务或领域的需求变得越来越重要。微调是一种技术,通过对预训练模型进行进一步训练,使其能够更好地解决特定问题或在特定领域表现更佳。本报告将提供一个全面的学习方案,从基础概念到高级技术,帮助读者系统性地掌握AI模型微调的各个方面。1.模型微调基础概念(入门阶段)什么是模型微调?模型微调(Fine-tuning)是指在预训练模型基础上,使用特
- AtCoder 第393场初级竞赛 A-E题解
是帅帅的少年
青少年编程比赛题解算法c++数据结构
APoisonousOyster(有毒牡蛎)【题目链接】原题链接:A-PoisonousOyster【考点】判断【题目大意】有四种牡蛎,其中有一种有毒,Takahashi吃了牡蛎1和2,Aoki吃了牡蛎1和3,根据两人的状态(sick/fine)找到哪种牡蛎有毒。【解析】一共有四种可能性,分别对应一种牡蛎有毒。判断输出即可。【难度】GESP一级【代码参考】#includeusingnamespac
- 大模型微调(Fine-tuning)概览
MzKyle
深度学习人工智能
大模型微调(Fine-Tuning)是将预训练大模型(如GPT、LLaMA)适配到特定任务或领域的核心技术,其效率与效果直接影响大模型的落地价值。一、微调的本质与核心目标1.技术定义微调是通过在预训练模型基础上,使用特定任务或领域的小规模数据进行二次训练,使模型参数适应新场景的过程。其核心逻辑是:预训练阶段学习通用知识(如语言规律、世界常识);微调阶段将通用能力转化为领域专属能力(如医疗问答、法律
- 大模型笔记_模型微调
饕餮争锋
AI大模型笔记笔记语言模型人工智能
1.大模型微调的概念大模型微调(Fine-tuning)是指在预训练大语言模型(如GPT、BERT、LLaMA等)的基础上,针对特定任务或领域,使用小量的目标领域数据对模型进行进一步训练,使其更好地适配具体应用场景的过程。预训练模型通常在大规模通用语料库(如互联网文本、书籍等)上训练,具备通用的语言理解和生成能力,而微调则通过调整模型参数,使其在特定任务(如分类、问答、生成等)或领域(如医疗、金融
- 大模型笔记_模型微调 vs RAG
饕餮争锋
AI大模型笔记笔记人工智能语言模型
1.模型微调与RAG介绍模型微调(Fine-tuning):大模型笔记_模型微调-CSDN博客检索增强生成RAG(Retrieval-AugmentedGeneration):大模型笔记_检索增强生成(RAG)-CSDN博客2.模型微调与RAG对比分析2.1.核心定义与原理维度模型微调(Fine-tuning)RAG(Retrieval-AugmentedGeneration)核心思想通过调整模型
- 大模型笔记:RAG(Retrieval Augmented Generation,检索增强生成)
1大模型知识更新的困境大模型的知识更新是很困难的,主要原因在于:训练数据集固定,一旦训练完成就很难再通过继续训练来更新其知识参数量巨大,随时进行fine-tuning需要消耗大量的资源,并且需要相当长的时间LLM的知识是编码在数百亿个参数中的,无法直接查询或编辑其中的知识图谱——>LLM的知识具有静态、封闭和有限的特点。——>为了赋予LLM持续学习和获取新知识的能力,RAG应运而生2RAG介绍这是
- LLMs 入门实战系列
AGI小明同学
人工智能大数据音视频llama职场和发展
【LLMs入门实战系列】第一层LLMstoNaturalLanguageProcessing(NLP)第一重ChatGLM-6B【ChatGLM-6B入门-一】清华大学开源中文版ChatGLM-6B模型学习与实战介绍:ChatGLM-6B环境配置和部署【ChatGLM-6B入门-二】清华大学开源中文版ChatGLM-6B模型微调实战ChatGLM-6BP-TuningV2微调:Fine-tunin
- 【大模型】大模型微调(上)
油泼辣子多加
大模型实战深度学习机器学习人工智能
一、概念与背景微调(Fine-tuning)是一种迁移学习的方法,通过在已有的预训练模型基础上,利用目标任务的少量标注数据对模型进行二次训练,使其更好地适应特定任务的需求。预训练阶段模型通常使用大规模通用语料(如维基百科、新闻语料)进行无监督或自监督训练,学习通用的语言表示;微调阶段则使用特定任务数据进行有监督学习,实现从通用到专用的知识迁移。预训练(Pre-training):在大规模无标签语料
- 人工智能-SFT(Supervised Fine-Tuning)、RLHF 和 GRPO
高效匠人
人工智能人工智能
以下是SFT(SupervisedFine-Tuning)、RLHF(ReinforcementLearningfromHumanFeedback)和GRPO群体相对策略优化(GRPO,GroupRelativePolicyOptimization)是一种强化学习(RL)算法,的核心差异与原理对比,涵盖定义、训练机制、优缺点及适用场景:一、核心定义方法核心定义SFT基于标注的「输入-输出」对进行监
- 【大模型实践解惑】 如何在 Supervised Fine‑Tuning (SFT) 之后进行 Direct Preference Optimization (DPO) 微调?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习机器学习SFTpytorch大模型DPO强化学习DPO微调
关于在SFT之后进行DPO微调的技术解析与应用指南,结合国内外最新研究及实践案例,包含代码实现与未来优化方向:文章目录DPO的核心原理与SFT的局限性1.1SFT的瓶颈与偏好学习的必要性1.2DPO的数学基础与优化目标DPO与SFT的国内外典型应用2.1代码生成优化:北大CodeDPO框架2.2长文本LLM对齐:清华LongReward2.3自动驾驶决策规划:地平线AlphaDriveDPO微调全
- 【论文阅读】VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning
s1ckrain
强化学习AIGC计算机视觉论文阅读多模态大模型强化学习
VideoChat-R1:EnhancingSpatio-TemporalPerceptionviaReinforcementFine-Tuning原文摘要研究现状:强化学习有关方法在视频理解任务中的应用仍未被充分探索。研究目标:方法:采用强化微调(RFT)结合GRPO,专门针对视频MLLMs进行优化。目标:增强模型对视频时空感知的能力。保持模型的通用能力。实验与发现RFT在小样本数据下即可显著提
- BERT模型原理与Fine-tuning实战指南
layneyao
aibert人工智能深度学习
BERT模型原理与Fine-tuning实战指南系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录BERT模型原理与Fine-tuning实战指南摘要引言1.BERT核心原理解析1.1Transformer架构基础1.2预训练任务设计1.3模型变体对比2.BERTFine-tuning实战指南2.1环境准备2.2文本分类任务实战2.3问答系统实战3.
- 【自然语言处理与大模型】大模型(LLM)基础知识⑤
小oo呆
【自然语言处理与大模型】自然语言处理人工智能
(1)如何保证大模型生成内容的合规性?从训练数据净化、RLHF对齐、实时过滤三层技术防线入手,同时建立人工审核-用户反馈-版本回滚的流程闭环,最后通过法规映射和日志审计满足制度合规。核心是让技术防控(如Fine-tuning+Post-filtering)与人类监督形成交叉验证,而非依赖单一手段。技术层面:技术手段描述强化学习与指令微调通过强化学习(如RLHF)或指令微调,让模型更倾向于生成合规、
- 小样本分类新突破:QPT技术详解
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython分类数据挖掘人工智能自然语言处理机器学习算法
问题导向式提示调优(QPT)这篇论文主要讲了一个针对小样本(数据量少)文本分类问题的新方法,叫问题导向式提示调优(QPT)。核心思路是让预训练语言模型(比如BERT的升级版RoBERTa)在少量标注数据下,通过设计特定的“提问式模板”和“标签词扩展技术”来提升分类效果。图1:全模型微调、掩码语言模型(MLM)和提示学习范例图示内容(a)通用微调模型(fine-tuning)输入文本直接通过预训练模
- PaddleHub识别中文人名实战记录及心得
Jason-Lai
NLP人工智能python自然语言处理
一,简介与特性便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tuneAPI,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用,PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型【模型种类丰富】:涵盖大模型、CV、NLP、Audio、Video、工业应用主流六大品类的400+预训练模型,全
- SolidJS 深度解析:高性能响应式前端框架
冬冬小圆帽
前端框架
SolidJS是一个新兴的响应式前端框架,以其极致的性能、简洁的语法和接近原生JavaScript的开发体验而闻名。它结合了React的声明式UI和Svelte的编译时优化,同时采用细粒度响应式更新,避免了虚拟DOM(VirtualDOM)的开销。1.SolidJS的核心设计理念1.1细粒度响应式(Fine-GrainedReactivity)无虚拟DOM:直接操作DOM,减少diff计算。依赖追
- AI-多模态-2021:FILIP【一种基于交互的细粒度图文预训练模型】
u013250861
VLM/多模态人工智能
前言FILIP(Fine-grainedInteractiveLanguage-ImagePretrain)是一种基于交互的细粒度图文预训练模型,用于解决图文双塔匹配模型中的细粒度匹配问题。本文对该论文进行阅读笔记,论文:https://arxiv.org/abs/2111.07783FILIP[1]提出是为了解决图文匹配中的细粒度匹配问题。我们之前在博文[2]中曾经讨论过,在图文双塔匹配中,由于
- 【论文精读】Copy or Not? Reference-Based Face Image Restoration with Fine Details
qianx77
论文阅读论文阅读人工智能算法
文章目录0.前言1.摘要2.问题描述3.方法method3.1网络结构3.2损失函数(文本重点)4.实验结果0.前言文章属于lowlevel中的Reference-guidedfacerestoration类别,被2025WACV所接收,文章主要目的就是充分利用参考人脸的高清细节,将其复制到低质图像LQ中,实现真实且ID一致的人脸修复。以下是论文链接和代码链接[paper][code]更多关于fa
- D-FINE数据清洗与预处理实战:从零到一构建企业级数据处理流水线
Android洋芋
数据清洗D-FINE分布式处理数据质量验证智能噪声检测
简介D-FINE技术虽为实时目标检测模型,但其核心思想可迁移至数据清洗领域。本文将从企业级数据清洗与预处理的实际需求出发,结合D-FINE的细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)技术思想,设计一套高效的数据清洗与预处理实战方案。文章将提供完整的代码实现、详细的步骤解释,以及性能评估方法,帮助读者掌握这一技术的实战应用。一、D-FINE技术背景与数据清洗关联性D-FINE是中科
- 大模型企业落地应用方法对比:微调、RAG与MCP工具调用
热血的青春666
AGI大语言模型应用语言模型人工智能
一、微调(Fine-tuning)存储数据类型训练数据:结构化的问答对、指令-响应对格式要求:通常为JSON、JSONL或CSV格式数据质量:需要高质量、领域特定的标注数据数据规模:根据需求从数千到数十万条不等,质量高于数量技术栈基础模型:GPT、LLaMA、Claude等大型语言模型训练框架:HuggingFaceTransformers、PEFT、LoRA、QLoRA训练工具:DeepSpee
- 从零开始大模型开发与微调:词向量训练模型Word2Vec使用介绍
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
从零开始大模型开发与微调:词向量训练模型Word2Vec使用介绍关键词:词向量,Word2Vec,神经网络,深度学习,自然语言处理(NLP),预训练,微调,Fine-Tuning1.背景介绍1.1问题由来在深度学习蓬勃发展的今天,人工智能技术在自然语言处理(NLP)、计算机视觉、语音识别等领域取得了长足的进步。然而,语言和文本数据由于其高维度和非结构化特性,使得深度学习模型的训练和应用面临诸多挑战
- DeepSeek实战--微调
AI掘金
ai大模型微调大模型AIGCAI应用
1.为什么是微调?微调LLM(Fine-tuningLargeLanguageModels)是指基于预训练好的大型语言模型(如GPT、LLaMA、PaLM等),通过特定领域或任务的数据进一步训练,使其适应具体需求的过程。它是将通用语言模型转化为专用模型的核心方法。2.微调适用于哪些场景?1)领域专业化医疗:微调后的模型可理解医学论文、生成诊断建议。法律:准确引用法律条文,避免生成错误解释。2)任务
- [Pytorch案例实践006]基于迁移学习-ResNet18的蚂蚁&蜜蜂图像分类实战
Seraphina_Lily
Pytorch案例实践学习pytorch迁移学习分类人工智能深度学习python
一、项目介绍此项目的目标是对图像数据集进行分类任务。它使用了`resnet18`作为基础模型,并对其进行微调以适应新的数据集。这里采用的是迁移学习的一种常见方式:微调(Fine-tuning)。迁移学习是一种机器学习方法,通过在大型数据集上预训练好的模型,然后将这些模型应用于不同的但相关的任务。这种方法可以显著减少新任务所需的训练时间和数据量。项目细节1.定义模型(`YourModel`类)-使用
- 深度解析AI大模型中的模型微调技术:从基础到实践
awei0916
AI人工智能
一、引言在人工智能领域,大模型的出现掀起了技术变革的浪潮。从GPT-3到LLaMA,从BERT到ChatGLM,这些参数规模动辄数十亿的预训练模型展现出惊人的通用能力。然而,通用能力向特定任务的落地离不开关键技术——模型微调(Fine-tuning)。本文将从模型基础、训练原理到微调技术展开深度解析,帮助读者掌握这一核心技术。二、大模型进化史:从萌芽到生态繁荣1.技术进化树全景图graphTDA[
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_