【精华】统计分析VOC格式数据集标签文件_Python

目录

        • 1.根据xml文件统计目标种类以及数量
        • 2.根据xml文件统计目标的平均长度、宽度、面积以及每一个目标在原图中的占比
        • 3.修改xml文件中类别名称

1.根据xml文件统计目标种类以及数量

# -*- coding:utf-8 -*-
# 根据xml文件统计目标种类以及数量
import os
import xml.etree.ElementTree as ET
import numpy as np
import sys
np.set_printoptions(threshold=sys.maxsize)
import matplotlib
from PIL import Image
 
def parse_obj(xml_path, filename):
    tree=ET.parse(xml_path+filename)
    objects=[]
    for obj in tree.findall('object'):
        obj_struct={}
        obj_struct['name']=obj.find('name').text
        objects.append(obj_struct)
    return objects
  
def read_image(image_path, filename):
    im=Image.open(image_path+filename)
    W=im.size[0]
    H=im.size[1]
    area=W*H
    im_info=[W,H,area]
    return im_info
  
if __name__ == '__main__':
    xml_path='/home/Desktop/VOCdevkit/VOC2018/Annotations/'
    filenamess=os.listdir(xml_path)
    filenames=[]
    for name in filenamess:
        name=name.replace('.xml','')
        filenames.append(name)
    recs={}
    obs_shape={}
    classnames=[]
    num_objs={}
    obj_avg={}
    for i,name in enumerate(filenames):
        recs[name]=parse_obj(xml_path, name+ '.xml' )
    for name in filenames:
        for object in recs[name]:
            if object['name'] not in num_objs.keys():
                num_objs[object['name']]=1
            else:
                num_objs[object['name']]+=1
        if object['name'] not in classnames:
            classnames.append(object['name'])
    for name in classnames:
        print('{}:{}个'.format(name,num_objs[name]))
    print('信息统计算完毕。')

2.根据xml文件统计目标的平均长度、宽度、面积以及每一个目标在原图中的占比

# -*- coding:utf-8 -*-
#统计
# 计算每一个目标在原图中的占比
# 计算目标的平均长度、
# 计算平均宽度,
# 计算平均面积、
# 计算目标平均占比
import os
import xml.etree.ElementTree as ET
import numpy as np
#np.set_printoptions(suppress=True, threshold=np.nan)  #10,000,000
np.set_printoptions(suppress=True, threshold=10000000)  #10,000,000
import matplotlib
from PIL import Image
def parse_obj(xml_path, filename):
    tree = ET.parse(xml_path + filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)
    return objects
def read_image(image_path, filename):
    im = Image.open(image_path + filename)
    W = im.size[0]
    H = im.size[1]
    area = W * H
    im_info = [W, H, area]
    return im_info
if __name__ == '__main__':
    image_path = '/home/Desktop/VOCdevkit/VOC2018/JPEGImages/'
    xml_path = '/home/Desktop/VOCdevkit/VOC2018/Annotations/'
    filenamess = os.listdir(xml_path)
    filenames = []
    for name in filenamess:
        name = name.replace('.xml', '')
        filenames.append(name)
    print(filenames)
    recs = {}
    ims_info = {}
    obs_shape = {}
    classnames = []
    num_objs={}
    obj_avg = {}
    for i, name in enumerate(filenames):
        print('正在处理 {}.xml '.format(name))
        recs[name] = parse_obj(xml_path, name + '.xml')
        print('正在处理 {}.jpg '.format(name))
        ims_info[name] = read_image(image_path, name + '.jpg')
    print('所有信息收集完毕。')
    print('正在处理信息......')
    for name in filenames:
        im_w = ims_info[name][0]
        im_h = ims_info[name][1]
        im_area = ims_info[name][2]
        for object in recs[name]:
            if object['name'] not in num_objs.keys():
                num_objs[object['name']] = 1
            else:
                num_objs[object['name']] += 1
            #num_objs += 1
            ob_w = object['bbox'][2] - object['bbox'][0]
            ob_h = object['bbox'][3] - object['bbox'][1]
            ob_area = ob_w * ob_h
            w_rate = ob_w / im_w
            h_rate = ob_h / im_h
            area_rate = ob_area / im_area
            if not object['name'] in obs_shape.keys():
                obs_shape[object['name']] = ([[ob_w,
                                               ob_h,
                                               ob_area,
                                               w_rate,
                                               h_rate,
                                               area_rate]])
            else:
                obs_shape[object['name']].append([ob_w,
                                                  ob_h,
                                                  ob_area,
                                                  w_rate,
                                                  h_rate,
                                                  area_rate])
        if object['name'] not in classnames:
            classnames.append(object['name'])  # 求平均
    for name in classnames:
        obj_avg[name] = (np.array(obs_shape[name]).sum(axis=0)) / num_objs[name]
        print('{}的情况如下:*******\n'.format(name))
        print('  目标平均W={}'.format(obj_avg[name][0]))
        print('  目标平均H={}'.format(obj_avg[name][1]))
        print('  目标平均area={}'.format(obj_avg[name][2]))
        print('  目标平均与原图的W比例={}'.format(obj_avg[name][3]))
        print('  目标平均与原图的H比例={}'.format(obj_avg[name][4]))
        print('  目标平均原图面积占比={}\n'.format(obj_avg[name][5]))
    print('信息统计计算完毕。')

3.修改xml文件中类别名称

#修改xml文件中的目标的名字,
import os, sys
import glob
from xml.etree import ElementTree as ET
# 批量读取Annotations下的xml文件
# per=ET.parse(r'C:\Users\rockhuang\Desktop\Annotations\000003.xml')
xml_dir = r'/home/Desktop/VOCdevkit/VOC2018/Annotations'
xml_list = glob.glob(xml_dir + '/*.xml')
for xml in xml_list:
    print(xml)
    per = ET.parse(xml)
    p = per.findall('/object')
    for oneper in p:  # 找出person节点
        child = oneper.getchildren()[0]  # 找出person节点的子节点
        if child.text == 'PinNormal':   #需要修改的名字
            child.text = 'normal bolt'    #修改成什么名字
        if child.text == 'PinDefect':    #需要修改的名字
            child.text = 'defect bolt-1'   #修改成什么名字
    per.write(xml)
    print(child.tag, ':', child.text)

你可能感兴趣的:(数据集,数据结构与算法,计算机视觉,xml,python)