- 非对称加密算法原理与应用2——RSA私钥加密文件
私语茶馆
云部署与开发架构及产品灵感记录RSA2048私钥加密
作者:私语茶馆1.相关章节(1)非对称加密算法原理与应用1——秘钥的生成-CSDN博客第一章节讲述的是创建秘钥对,并将公钥和私钥导出为文件格式存储。本章节继续讲如何利用私钥加密内容,包括从密钥库或文件中读取私钥,并用RSA算法加密文件和String。2.私钥加密的概述本文主要基于第一章节的RSA2048bit的非对称加密算法讲述如何利用私钥加密文件。这种加密后的文件,只能由该私钥对应的公钥来解密。
- 架构评审的自动化与人工智能: 如何提高效率
光剑书架上的书
架构自动化人工智能运维
1.背景介绍架构评审是软件开发过程中的一个关键环节,它旨在确保软件架构的质量、可维护性和可扩展性。传统的架构评审通常是由人工进行,需要大量的时间和精力。随着大数据技术和人工智能的发展,自动化和人工智能技术已经开始应用于架构评审,从而提高评审的效率和准确性。在本文中,我们将讨论如何通过自动化和人工智能技术来提高架构评审的效率。我们将从以下几个方面进行讨论:背景介绍核心概念与联系核心算法原理和具体操作
- Open3D 实现CSF布料模拟算法
今夕是何年,
单目+双目Open3d计算机视觉
目录一、算法原理二,详细过程三,环境安装四,代码实现五,结果展示6,在cloudcompare中的实现一、算法原理1、流程概述1)利用点云·滤波算法或者点云处理软件滤除异常点;2)将激光雷达点云倒置;3)设置模拟布料,设置布料网格分辨率GR,确定模拟粒子数。布料的位置设置在点云最高点以上;4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为IHV;5)布
- python求两个数的最大公约数穷举法_最大公约数GCD算法
weixin_39789101
采用Python实现四种最大公约数(greatestcommondivisor)算法,并比较评估性能。算法原理:1、辗转相除法:已知a,b,c为正整数,若a除以b余c,则GCD(a,b)=GCD(b,c)。2、更相减损术:任意给定两个正整数,若是偶数,则用2约简。以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。3、除穷举法:将小数依次除
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 2024年MathorCup高校数学建模挑战赛(C题)深度剖析_建模完整过程+详细思路+代码全解析
Unicorn建模
数学建模python算法
问题1本问题属于时间序列预测问题,其目标是对未来一段时期内的信息进行预测。因此可以采用基于时间序列的回归模型进行货量预测。具体而言,将首先分析时间序列的性质,然后构建回归模型,最后利用模型对未来30天每天及每小时的货量进行预测。【算法原理】(1)时间序列的性质时间序列实际上是一种随时间变化的连续数据,其特点主要体现在两个方面:趋势性和周期性。趋势性是指时间序列数据在长期内呈现出的增长或减小的趋势,
- 利用全核范数去噪技术优化彩色图像处理
潦草通信狗
人工智能深度学习
一、引言图像去噪是图像处理领域中一个经典且重要的问题。随着技术的发展,各种算法不断涌现,其中全变分(TotalVariation,TV)方法因其在边缘保持方面的优势而广受欢迎。本文将介绍一种基于全核范数(TotalNuclearNorm,TNN)的去噪技术,该技术在处理彩色图像时表现出色。二、算法原理全核范数去噪技术基于全变分理论,通过最小化包含数据保真项和正则项的目标函数来实现去噪。数据保真项确
- 2024国赛数学建模-模拟火算法(MATLAB 实现)
V建模忠哥V
2024国赛数学建模算法matlab
模拟退火算法1.1算法原理模拟退火算法的基本思想是从一给定解开始,从邻域中随机产生另一个解,接受Metropolis准则允许目标函数在有限范围内变坏,它由一控制参数t决定,其作用类似于物理过程中的温度T,对于控制参数的每一取值,算法持续进行“产生—判断—接受或舍去”的迭代过程,对应着固体在某一恒定温度下的趋于热平衡的过程,当控制参数逐渐减小并趋于0时,系统越来越趋于平衡态,最后系统状态对应于优化问
- Python处理大数据,如何提高处理速度
RS&
#pythonpython大数据pandas
Python处理大数据,如何提高处理速度?一、利用大数据分析工具Dask:https://dask.org/Dask简介:Dask支持Pandas的DataFrame和NumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。Dask可支持pandas、Numpy、Sklearn、XGBoost、XArray、RAPIDS等等。原理及使用方法:https://blog.
- 8 自研rgbd相机基于rk3566之sensor图像解析与AWB算法原理
三十度角阳光的问候
awbraw图rk3566图像解析白平衡rgb-demasac
自研rgbd相机基于rk3566之sensor图像解析与AWB开发1、sensor-raw图解析介绍2、sensor-raw图解析程序详解常规raw10-to-raw16数据解析sc2310-raw10-to-raw16图像解析gc2053/gc2093raw图像解析3、sensor-awb及常用算法程序bayerbggrtorgb图像解析简单白平衡算法灰度世界法白平衡算法完美反射法白平衡算法三通
- 【大模型实战篇】大模型周边NLP技术回顾及预训练模型数据预处理过程解析(预告)
源泉的小广场
大模型自然语言处理人工智能大模型LLM预训练模型数据预处理高质量数据
1.背景介绍进入到大模型时代,似乎宣告了与过去自然语言处理技术的结束,但其实这两者并不矛盾。大模型时代,原有的自然语言处理技术,依然可以在大模型的诸多场景中应用,特别是对数据的预处理阶段。本篇主要关注TextCNN、FastText和Word2Vec等低成本的自然语言处理技术,如何在大模型时代发挥其余热。今天先抛出这个主题预告,接下来会花些时间,逐步细化分析这些周边技术的算法原理、数学分析以及大模
- 数学建模统计题中常用的聚类分类
皆过客,揽星河
数学建模大赛数学建模算法k-means数据处理Pythonnumpy
聚类分类K均值聚类(K-MeansClustering)是一种广泛使用的聚类算法,旨在将数据点分成K个簇,使得簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。以下是对K均值聚类的详细介绍:算法原理K均值聚类算法通过迭代的方式优化簇的划分,步骤如下:1.初始化:选择K个初始簇中心(也称为质心)。这些初始簇中心可以通过随机选择K个数据点,或使用更高级的方法(如K均值++初始化)来确定。2.分配阶段
- XGBoost调参demo(Python)
妄念驱动
机器学习算法python机器学习XGBoostpython
XGBoost我们用的是保险公司的一份数据#各种库importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.metricsi
- 【python】Python实现XGBoost算法的详细理论讲解与应用实战
景天科技苑
python轻松入门基础语法到高阶实战教学python算法开发语言XGBoost算法XGBoostpython实现XGBoost人工智能
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,PyQt5和Tkinter桌面开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi,flask等框架,云原生K
- 图形几何算法 -- 凸包算法
CAD三维软件二次开发
算法学习算法c#3d几何学
前言常用凸包算法包括GrahamScan算法和JarvisMarch(GiftWrapping)算法,在这里要简单介绍的是GrahamScan算法。1、概念凸包是一个点集所包围的最小的凸多边形。可以想象用一根绳子围绕着一群钉子,绳子所形成的轮廓便是这些钉子的凸包。在计算几何中,凸包得到了广泛的应用,涉及领域包括模式识别、图像处理和优化问题等。2、算法原理凸包算法的目标是从给定的点集(在二维平面中)
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- 自然语言处理系列五十四》文本聚类算法》K-means文本聚类算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能自然语言处理nlpai人工智能kmeansAIGC聚类
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类算法代码实战总结自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类是K-means算法的一个常用应用场景,下面介绍
- 自然语言处理系列五十五》文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理
陈敬雷-充电了么-CEO兼CTO
人工智能大数据算法算法自然语言处理聚类AIGCaigcchatgpt大数据
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA主题词-潜在狄利克雷分布模型代码实战总结自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA是潜在狄利克雷分布模型的简称,也
- MTCNN训练
迷若烟雨
人脸识别tensorflow深度学习caffe
MTCNN是当前效果最好的开源人脸检测算法之一,作者只提供了训练好的模型以及matlab部署代码,其训练和优化却没有放出来,引发了很多好事者复现如果只是要部署的话可以使用MTCNN,其提供了部署全平台实现,包括C++、python、ncnn和tensorflow,还有加速版本和opencv直接加载版本,是所有版本中的集大成者如果想了解算法原理,可以参考MTCNN_Step_by_Step本文的训练
- 【老生谈算法】matlab实现文字识别算法——文字识别算法
阿里matlab建模师
matlab算法原理详解matlab算法计算机视觉
基于matlab的文字识别算法1、文档下载:本算法已经整理成文档如下,有需要的朋友可以点击进行下载说明文档(点击下载)本算法文档【老生谈算法】matlab实现文字识别算法.doc更多matlab算法原理及源码详解可点击下方文字直达:500例精选matlab算法原理及源码详解——老生谈算法2、算法详解:本课程设计主要运用MATLAB的仿真平台设计进行文字识别算法的设计与仿真。也就是用于实现文字识别算
- 数学建模-插值算法原理笔记
Faye_C_66
数学建模数学建模
文章目录目的概念分类一般插值多项式拉格朗日插值法分段线性插值分段二次插值牛顿插值法埃尔米特插值原理分段三次埃米尔特插值三次样条插值这里是根据清风数学建模视频课程记录的笔记,我不是清风本人。想系统学习数学建模的可以移步B站搜索相关视频目的比赛中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就可以使用一些方法“模拟产生”一些新的但又比较靠谱的
- [Algorithm][综合训练][栈和排序][加减]详细讲解
DieSnowK
[OJ]#[综合训练]Algorithm算法综合训练栈和排序加减C++详细讲解
目录1.栈和排序1.题目链接2.算法原理详解&&代码实现2.加减1.题目链接2.算法原理详解&&代码实现1.栈和排序1.题目链接栈和排序2.算法原理详解&&代码实现解法:栈+贪心->每次尽可能先让当前需要的最大值弹出去vectorsolve(vector&a){intn=a.size();vectorhash(n+1,false);vectorret;intaim=n;stackst;for(au
- CLIQUE算法原理及Python实践
doublexiao79
数据分析与挖掘算法python机器学习
CLIQUE(ClusteringInQUEst)算法是一种基于网格的聚类方法,其主要目的是在数据集中发现子空间中基于密度的簇。以下是CLIQUE算法原理的详细解释:一、空间划分CLIQUE算法首先将数据对象的整个嵌入空间划分成多个单元(通常是超矩形)。这是通过将每个维度划分成不重叠的区间来实现的。每个单元代表数据空间中的一个特定区域,其大小由划分的区间决定。这种划分方式使得算法能够高效地处理大规
- Logistic分类算法原理及Python实践
doublexiao79
数据分析与挖掘分类python数据挖掘
一、Logistic分类算法原理Logistic分类算法,也称为逻辑回归(LogisticRegression),是机器学习中的一种经典分类算法,主要用于解决二分类问题。其原理基于线性回归和逻辑函数(Sigmoid函数)的组合,能够将输入特征的线性组合映射到一个概率范围内,从而进行分类预测。以下是Logistic分类算法的主要原理:1.线性组合首先,对于输入的n个特征,我们将其表示为一个n维的列向
- 每日一题:Leetcode-224 基本计算器
L.2626
Leetcode面试题算法
力扣题目解题思路java代码力扣题目:给你一个字符串表达式s,请你实现一个基本计算器来计算并返回它的值。注意:不允许使用任何将字符串作为数学表达式计算的内置函数,比如eval()。示例1:输入:s="1+1"输出:2示例2:输入:s="2-1+2"输出:3示例3:输入:s="(1+(4+5+2)-3)+(6+8)"输出:23解题思路:算法原理:这道题使用两个栈,一个数字栈numStack存储数字,
- sentence-bert_pytorch语义文本相似度算法模型
技术瘾君子1573
bertpytorch人工智能语义文本相似度模型
目录Sentence-BERT论文模型结构算法原理环境配置Docker(方法一)Dockerfile(方法二)Anaconda(方法三)数据集训练单机多卡单机单卡推理result精度应用场景算法类别热点应用行业源码仓库及问题反馈参考资料Sentence-BERT论文Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networkshttps://ar
- 自然语言处理系列五十》文本分类算法》SVM支持向量机算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能算法自然语言处理分类nlpai人工智能chatgpt
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机》代码实战总结自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机在文本分类的应用场景中,相比其他机器学习算法有更好的效果。下面介绍其原理,并用SparkMLlib机器
- fpga图像处理实战-均值滤波
梦梦梦梦子~
OV5640+图像处理图像处理fpga开发均值算法
均值滤波均值滤波是一种简单的图像处理技术,主要用于平滑图像,去除噪声。它通过用当前像素邻域的平均值代替该像素值,从而实现图像的平滑处理。这种滤波器在图像处理中被广泛用于减少图像中的随机噪声。算法原理均值滤波的基本思想是使用一个固定大小的滑动窗口(通常为方形,如3x3或5x5窗口),逐个遍历图像中的每个像素点。对于每个像素点,计算其邻域像素值的平均值,并用这个平均值替代该像素点的原始值。MATLAB
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理