Stream流使用,收集成一个List或者Set集合,可以代替for循环使用

文章目录

    • 1.Stream流是什么?
      • 2. stream流的创建方式?
        • 2.1通过集合直接创建
        • 2.2通过数组直接创建
        • 2.3通过Stream.of创建
      • 3. Stream对数据进行操作
        • 3.1 (filter,skip,limit,distinct)筛选和切片(方法直接可以通过链式编程写出)
        • 3.2 map映射
        • 3.3 进行排序
        • 3.4 (allmatch,noneMatch,findAny,filter)匹配查找
        • 3.5 (reduce)归约
        • 3.6 (collect) 收集,可以为Set(无序,去除重复),List(有序,有重复)
      • 4.用于筛选一个集合中不包含另外一个集合
      • 5.实例
      • 相关的一些方法
      • 大数据量时候并行流的效率
      • Stream的相关的方法

1.Stream流是什么?

它是jdk8 的java新特性, 主要是针对集合进行数据的筛选和查找操作,是一种高效且易用的数据处理方式 ,所以可以直接使用stream流来替代for或者while循环的使用。

2. stream流的创建方式?

2.1通过集合直接创建

        List<String> strings = Arrays.asList("1", "2", "3");
//        返回一个顺序流
        Stream<String> stream = strings.stream();
//  返回一个并行流
        Stream<String> stringStream = strings.parallelStream();

2.2通过数组直接创建

可以把上面的集合直接转化为数组

 Stream<Object> stream1 = Arrays.stream(strings.toArray());


2.3通过Stream.of创建

      Stream<Integer> integerStream = Stream.of(1, 2, 3, 5, 6, 7, 8);
        Stream<String> stringStream1 = Stream.of("11", "22", "33");

3. Stream对数据进行操作

3.1 (filter,skip,limit,distinct)筛选和切片(方法直接可以通过链式编程写出)

3.2 map映射

  inspectorUpholds.stream()
                .map(InspectorUphold::getPerid)
                .collect(Collectors.toList()).forEach(System.out::println);

3.3 进行排序

list.stream().sorted(Comparator
            .comparingInt(Student::getAge));

3.4 (allmatch,noneMatch,findAny,filter)匹配查找

3.5 (reduce)归约

// 计算学生总分
        List<Student> studentList = StudentData.getStudents();
        Stream<Double> doubleStream = studentList.stream().map(Student::getScore);
        Optional<Double> reduce1 = doubleStream.reduce(Double::sum);
        System.out.println(reduce1.orElse(0.0));

3.6 (collect) 收集,可以为Set(无序,去除重复),List(有序,有重复)

        Set<String> set = inspectorUpholds.stream()

                .collect(Collectors.groupingBy(InspectorUphold::getPerid))
                .keySet();


   

        List<String> collect1 = inspectorUpholds.stream()
                .map(InspectorUphold::getPerid)
                .collect(Collectors.toList());  
 inspectorUpholds.stream()
                .map(InspectorUphold::getPerid)
                .collect(Collectors.toList()).forEach(System.out::println);

4.用于筛选一个集合中不包含另外一个集合

list为大的集合,zjlist小的

    List<? extends List> list1 = list.stream().filter(item -> zjstringsList.stream().allMatch(each -> !item.equals(each))).collect(Collectors.toList());

5.实例

## java8新特性(lamda,Stream流)

### lamda

lamda: (parameters)->{expressions};或者()->expressions;

### Stream流

java8出现的一种用于对集合的进行数据操作的工具。

是数据渠道,用于操作集合、数组等,所生成的序列。**流讲的是计算。**

注意:

1. Stream自己不会存储元素
2. 会返回一个新的Stream
3. Stream操作是延迟执行的。

流程:

数据源(转换为流)----》流水线的操作(filter,map,sort,limit,collect)--->变为一个新的流。

1. filter-接收Lamda,从流中排除某些元素
2. limit()-限制元素的个数
3. skip(n)跳过前n个元素,不足n个,则返回一个空流。与limit(n)互补
4. distinct---筛选操作,通过hashCode()equals()方法去除重复元素

### 创建流

```java
package com.hou.demo.stream;

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.stream.IntStream;
import java.util.stream.Stream;

public class CreateStream {
    public static void main(String[] args) {
        int[] arrays = new int[10];
        IntStream stream = Arrays.stream(arrays);

        ArrayList<String> list = new ArrayList<>();
        list.stream();

        Stream<String> aa = Stream.of("aa", "b", "c", "d", "e");
        aa.forEach(System.out::println);
        User user = new User();
        Stream.of(user);

//        创建无限流
        Stream<Integer> iterate = Stream.iterate(0, x -> x + 2).limit(5).skip(3);
        iterate.forEach(System.out::println);

    }
}

相关的一些方法

package com.hou.demo.stream;

import org.junit.Test;

import java.util.ArrayList;
import java.util.Optional;

/*
* 终止操作
* */
public class TestStream3 {
    User user1 = new User(1, "h", 18, User.Status.FREE);
    User user2 = new User(1, "ho", 19, User.Status.BUSY);
    User user3 = new User(1, "h", 20,User.Status.BUSY);
    User user4 = new User(1, "h", 17,User.Status.VOCATION);

    /*
    * 查找和匹配
    * allMatch--检查是否匹配所有元素
    * anyMathch--检查是否至少匹配一个元素
    * noneMatch
    * FindFirst
    * findAny
    * count --返回流中元素总个数
    * max --返回流中最大值
    * min --返回流中最小值
    *
    *
    *
    * */

    @Test
            public void test(){
        ArrayList<User> list = new ArrayList<>();
        list.add(user1);
        list.add(user2);
        list.add(user3);
        list.add(user4);
        boolean allMatch = list.stream().allMatch(u -> {
            return u.getStatus().equals(User.Status.BUSY);
        });
        System.out.println(allMatch);


        boolean b = list.stream()
                .anyMatch(u -> {
                    return u.getStatus().equals(User.Status.BUSY);
                });
        System.out.println(b);

        long count = list.parallelStream().count();
        System.out.println(count);

        list.stream().allMatch(
                u ->{
                    return u.getStatus().equals(User.Status.BUSY);
                }
        );
        Optional<User> first = list.stream()
                .sorted((u1, u2) -> {
                    return u1.age.compareTo(u2.age);
                })
                .findFirst();
        User user = first.get();
        System.out.println(user);
//这样可以有效的避免空指针
        Optional<User> userMax = list.stream()
                .max((u1, u2) -> Integer.compare(u1.getAge(), u2.getAge()));

        System.out.println(userMax.get());
        Integer ageMin = list.stream()
                .map(User::getAge)
                .min(Integer::compare).get();
        System.out.println(ageMin);


    }






}

大数据量时候并行流的效率

package com.hou.demo.forkJoin;

import java.time.Duration;
import java.time.Instant;
import java.util.stream.LongStream;

public class LongStreamRangeClosedDemo {
    public static void main(String[] args) {
        test3();
//        test1();

    }


    public static void test1() {
        Instant start = Instant.now();
        Long sum=0L;
        for (int i = 0; i < 100000000L; i++) {
            sum +=i;



        }
        System.out.println("sum="+sum);
        Instant end = Instant.now();
        System.out.println("time="+Duration.between(start,end ).toMillis());


    }
    public static void test3(){
        long start = System.currentTimeMillis();
        Instant start1 = Instant.now();
//        并行流 0-1000000000计算总共的和
        long sum = LongStream.rangeClosed(0L, 100000000L).parallel().reduce(0, Long::sum);
        System.out.println("sum="+sum);

        long end = System.currentTimeMillis();
        Instant end1 = Instant.now();
        Duration between = Duration.between(start1, end1);
        System.out.println("between="+between);

        System.out.println("time="+Duration.between(start1,end1).toMillis());

    
    }
}

Stream的相关的方法

  1. 分组,多次分组
  2. 分区符合条件的在一个区,不符合的在一个区
  3. reduce 归约
  4. map()
  5. collect()Collectors.toList()进行相关的收集操作。
package com.hou.demo.stream;

import org.junit.Test;

import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class StreamFunctionTest {
    User user1 = new User(1, "huige", 19, User.Status.BUSY);
    User user2 = new User(2, "luhonglan", 19, User.Status.FREE);
    User user6 = new User(2, "luhonglan", 52, User.Status.VOCATION);

    User user3 = new User(0, "houfang", 20,User.Status.VOCATION);
    User user4 = new User(10, "houzhicong", 21);
    User user5 = new User(19, "houzhicong", 21);

    ArrayList<User> list = new ArrayList<>();

    @Test
    public  void test6() {
        User user1 = new User(1, "h", 18);
        User user2 = new User(2, "ho", 19);
        User user3 = new User(0, "h", 20);
        User user4 = new User(10, "h", 21);

        ArrayList<User> list = new ArrayList<>();
        list.add(user1);
        list.add(user2);
        list.add(user3);
        list.add(user4);

//        sorted自然排序
      List list1 = new ArrayList<>();
        list1.add(33);
        list1.add(11);
        list1.add(22);
        list1.add(00);

        list1.stream().sorted().forEach(System.out::println);

//        定制排序


        list.stream()
                .sorted((u1,u2)->{
                    if(u1.username.equals(u2.username)){
                        return u1.age.compareTo(u2.age);
                    }else {

                        return u1.username.compareTo(u2.username);
                    }
                })
                .forEach(System.out::println);


//        这个是不执行的 是惰性加载 懒加载
        Stream<User> stream = list.stream().filter(user -> {
            System.out.println("中间操作");
            return user.age > 18;
        });

//       forEach的时候才执行
//        stream.forEach(System.out::println);


//      dinstinct  去重操作一定要生成hashCode()和equals方法才可以进行去重
        List<User> users = Arrays.asList(new User(9, "hzc", 108), new User(9, "liuke", 108),
                new User(9,"kz",108),
                new User(19,"kz",108),
                new User(29,"kz",109));

        users.stream().filter(user -> user.username.contains("k")).distinct().forEach(System.out::println);

    }
//    map映射,接收Lamda
//    flatMap
  @Test
  public void test1(){
      List<String> list = Arrays.asList("aa", "bb", "cc", "dd", "ee");
      List list1 = new ArrayList();
      list1.add("11");
      list1.add("22");
/*
* [11, 22, [aa, bb, cc, dd, ee]]
[11, 22, [aa, bb, cc, dd, ee], aa, bb, cc, dd, ee]
*
* */
      list1.add(list);
      System.out.println(list1);
      list1.addAll(list);
      System.out.println(list1);

  }


    @Test
    public void test(){
        List<String> list = Arrays.asList("aa", "bb", "cc", "dd", "ee");


//        区别

        list.stream()
                .map(str ->str.toUpperCase())
                .forEach(System.out::println);
        /*list.stream()
                .map(User::getUsername).forEach(System.out::println);
*/
        Stream<Stream<Character>> stream = list.stream()
                .map(StreamFunctionTest::filterCharacter);


//        flatMap和map的区别会把多个流变为一个流
        Stream<Character> characterStream = list.stream().flatMap(StreamFunctionTest::filterCharacter);

    }

    public static  Stream<Character> filterCharacter(String string){
        ArrayList<Character> list = new ArrayList<>();

        char[] chars = string.toCharArray();
        for (Character ch:chars
             ) {
            list.add(ch);

        }
        return list.stream();


    }
    /*
    * 归约
    * reduce(T identity,BinaryOperator) /reduce(BinaryOperator) -可以
    * 可以将流中元素反复结合起来,得到一个值。
    *
    *
    * */

    @Test
    public void test3(){
        List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);
        Integer sum = list.stream()
                .reduce(0, (x, y) -> x + y);
        System.out.println(sum);
//           用户
        List<User> users = Arrays.asList(new User(9, "hzc", 108), new User(9, "liuke", 108),
                new User(9,"kz",108),
                new User(9,"kz",108),
                new User(9,"kz",108));

        Optional<Integer> sum1 = users.stream()
                .map(User::getAge)
                .reduce(Integer::sum);
        System.out.println(sum1.get());


    }

    /*
    * collectors --将流转换为其他形式。接收一个Collector接口,用于给Stream做汇总的方法。
    *
    * */
    @Test
    public void test5() {
        list.add(user1);
       list.add(user2);
       /*  list.add(user3);
        list.add(user4);*/
        Set<String> collect = list.stream()
                .map(User::getUsername)
                .collect(Collectors.toSet());
        System.out.println(collect);

        List<String> collect1 = list.stream()
                .map(User::getUsername)
                .collect(Collectors.toList());
        System.out.println(collect1);

        HashSet<String> collectHashSet = list.stream()
                .map(User::getUsername)
                .collect(Collectors.toCollection(HashSet::new));
        System.out.println("hashSet打印出来:"+collectHashSet);
        collectHashSet.forEach(System.out::println);

        Integer minAge = list.stream()
                .map(User::getAge)
                .collect(Collectors.minBy(Integer::compare)).get();
        System.out.println("最小年龄:"+minAge);

        Integer maxAge = list.stream()
                .map(User::getAge)
                .collect(Collectors.maxBy(Integer::compare)).get();
        System.out.println("最大年龄:"+maxAge);

//        年龄总和
        Integer ageCount = list.stream()
                .collect(Collectors.summingInt(User::getAge));
        System.out.println(ageCount);

    }

    /*
    * 分组
    * */
    @Test
    public void test7(){
//        一级分组
        list.add(user1);
        list.add(user2);
        list.add(user6);
        Map<User.Status, List<User>> map = list.stream()
//                User::getStatus 注意一下这个不可以为空会报: java.lang.NullPointerException: element cannot be mapped to a null key
                .collect(Collectors.groupingBy(User::getStatus));

        System.out.println(map);


//        多级
        Map<User.Status, Map<String, List<User>>> map1 = list.stream()
                .collect(Collectors.groupingBy(User::getStatus, Collectors.groupingBy(
                        u -> {
                            if (u.getAge() <= 35) {
                                return "青年";

                            } else if (u.getAge() <= 50) {
                                return "中年";

                            } else {
                                return "老年";
                            }
                        }
                )));
        System.out.println("多级分类map1="+map1);


    }


    /*
    * 分区 符合的返回一个true区,不符合的返回一个false区
    *
    * */
    @Test
    public void test8() {

        list.add(user1);
        list.add(user2);
        list.add(user3);


        Map<Boolean, List<User>> map = list.stream()
                .collect(Collectors.partitioningBy(
                        u -> u.age > 20
                ));
        System.out.println("分区map(true=[],false=[])"+map);

        IntSummaryStatistics iss = list.stream()
                .collect(Collectors.summarizingInt(User::getAge));
        System.out.println("年龄的平均值"+iss.getAverage());
        System.out.println("年龄的总和:"+iss.getSum());
        System.out.println("年龄的最大值" + iss.getMax());

        /*
         * join(",")进行连接
         *
         * 返回结果
         * (huige,luhonglan,houfang)
         *
         * */
        String str = list.stream()
                .map(User::getUsername)
                .collect(Collectors.joining(",","(",")"));

        System.out.println(str);
    }

    
}


你可能感兴趣的:(java基础,Stream)