【力扣】盛最多水的容器

目录

题目

题目初步解析

水桶效应

代码实现逻辑

第一步

第二步

第三步

代码具体实现

注意

添加容器元素的函数

计算迭代并且判断面积是否是最大值

总代码

运行结果

总结


题目

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

【力扣】盛最多水的容器_第1张图片

题目初步解析

这一道题就是我们小时候常常说的水桶效应

水桶效应

水桶效应是指一只水桶想盛满水,必须每块木板都一样平齐且无破损,如果这只桶的木板中有一块不齐或者某块木板下面有破洞,这只桶就无法盛满水。是说一只水桶能盛多少水,并不取决于最长的那块木板,而是取决于最短的那块木板。也可称为短板效应。一个水桶无论有多高,它盛水的高度取决于其中最低的那块木板。

这就是我们要利用的思想来解答题目

代码实现逻辑

这是一个运用到双指针思想的问题(不一定用指针)

第一步

可以在数组的两侧(开头以及末尾)标记两个指针(或者记录下标)

然后计算面积

第二步

此时当然不能说这是最大的面积

我们要进行遍历

那怎么遍历呢?

还记得我们刚刚说的木头效应吗?

你装下的水取决于的是你最小的那一块木板

那如果要遍历的话

只能是短的一边进行更新,如果是左边的指针那就往右移动

如果是右边的就往左边进行移动

也就是都向“中间”更新

【力扣】盛最多水的容器_第2张图片

因为在横坐标两条垂线的距离降低的情况下,如果变化的是长边,盛水的长方形的高依旧不会变,不需要比较,那么面积必然会更小

第三步

那迭代出来的面积个数不止一个,怎么办呢?

分别比大小就可以了

第三步的步骤就是把每次迭代出来的值与之前的最大值比大小

如果更新的值更大,那就更新最大值就行

代码具体实现

注意

这里是展示所有代码可直接运行,但是力扣上的一个类,所以要改一下才可以跑

添加容器元素的函数

void addCounts(vector& sum_1)
{
	int length;
	cout << "输入数组的长度" << endl;
	cin >> length;

	int i = 1;
	while (i <= length)
	{
		int sum_2;
		cout << "输入第" << i << "个元素" << endl;
		cin >> sum_2;
		sum_1.insert(sum_1.end(), sum_2);
		i++;
	};
}

 这里就是最基本的赋值就行

可以用链表的形式,当然我图方便用了容器

不过如果用链表的话那下面的函数要进行修改

这些方法都可以

计算迭代并且判断面积是否是最大值

int maxArea(vector height) 
{
	int maxarea = 0;
	int maxarea_1 = 0;
	int i = 0;
	int j = height.size() - 1;
	//最左节点
	int left_str = height[i];
	//最右节点
	int right_str = height[j];
	while (i != j)
	{
		if (height[i] < height[j])
		{
			maxarea_1 = height[i] * (j - i);
			if (maxarea < maxarea_1)
				maxarea = maxarea_1;
			i++;
		}
		else
		{
			maxarea_1 = height[j] * (j - i);
			if (maxarea < maxarea_1)
				maxarea = maxarea_1;
			j--;
		}
	}
	return maxarea;
}

我这里是用下标进行定位的

计算面积同时判断大小

while语句中判断左边标记的下标等于右边的时候跳出循环

需要注意的是迭代的时候左边是++右边是--

总代码

总代码附上

#include 
#include 
using namespace std;
//添加数组元素
void addCounts(vector& sum_1)
{
	int length;
	cout << "输入数组的长度" << endl;
	cin >> length;

	int i = 1;
	while (i <= length)
	{
		int sum_2;
		cout << "输入第" << i << "个元素" << endl;
		cin >> sum_2;
		sum_1.insert(sum_1.end(), sum_2);
		i++;
	};
}
int maxArea(vector height) 
{
	int maxarea = 0;
	int maxarea_1 = 0;
	int i = 0;
	int j = height.size() - 1;
	//最左节点
	int left_str = height[i];
	//最右节点
	int right_str = height[j];
	while (i != j)
	{
		if (height[i] < height[j])
		{
			maxarea_1 = height[i] * (j - i);
			if (maxarea < maxarea_1)
				maxarea = maxarea_1;
			i++;
		}
		else
		{
			maxarea_1 = height[j] * (j - i);
			if (maxarea < maxarea_1)
				maxarea = maxarea_1;
			j--;
		}
	}
	return maxarea;
}
int main()
{
	vector sum_1;
	addCounts(sum_1);
	int maxarea = maxArea(sum_1);
	cout << "*************************************************************************"<< endl;
	cout <<"面积为" << maxarea << endl;
	return 0;
}

运行结果

和题目得到示例得到的结果一样

【力扣】盛最多水的容器_第3张图片

总结

本次博客学习了一种新的思想,并且巧妙的运用了学到的木桶效应来进行解题

你可能感兴趣的:(c/c++,数据结构,leetcode,算法,数据结构,c++)