足球- EDA的历史数据分析并可视化

足球- EDA的历史数据分析并可视化

  • 背景
  • 数据介绍
  • 探索数据时需要遵循的一些方向:
  • 数据处理
    • 导入库
    • 数据探索
  • 数据可视化
    • 赛事分析
    • 主客场比分
    • 相关性分析
    • 时间序列分析
  • 总结

背景

该数据集包括从1872年第一场正式比赛到2023年的44,341场国际足球比赛的结果。比赛范围从FIFA世界杯到FIFI Wild杯再到常规的友谊赛。这些比赛严格来说是男子国际比赛,数据不包括奥运会或至少有一支球队是国家B队、U-23或联赛精选队的比赛。

数据介绍

results.csv包括以下列:

  • date - 比赛日期
  • home_team - 主队的名字
  • away_team - 客场球队的名称
  • home_score - 全职主队得分,包括加时赛,不包括点球大战
  • away_score - 全职客队得分,包括加时赛,不包括点球大战
  • tournament - 锦标赛的名称
  • city - 比赛所在城市/城镇/行政单位的名称
  • country -比赛所在国家的名称
  • neutral - 真/假栏,表示比赛是否在中立场地进行

探索数据时需要遵循的一些方向:

谁是有史以来最好的球队

哪些球队统治了不同时代的足球

古往今来,国际足球有什么趋势——主场优势、总进球数、球队实力分布等

我们能从足球比赛中对地缘政治说些什么吗——国家的数量是如何变化的

哪些球队喜欢相互比赛

哪些国家主办了最多自己没有参加的比赛

举办大型赛事对一个国家在比赛中的胜算有多大帮助

哪些球队在友谊赛和友谊赛中最积极——这对他们有帮助还是有伤害

数据处理

import numpy as np 
import pandas as pd 
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

导入库

import matplotlib.pyplot as plt
import seaborn as sns

数据探索

df = pd.read_csv('/kaggle/input/international-football-results-from-1872-to-2017/results.csv')
df.head()

足球- EDA的历史数据分析并可视化_第1张图片

print(f"This Dataset Includes {df.shape}")

在这里插入图片描述

df.info()

足球- EDA的历史数据分析并可视化_第2张图片

df.describe()

足球- EDA的历史数据分析并可视化_第3张图片

df.describe(include=object)

足球- EDA的历史数据分析并可视化_第4张图片

df.isna().sum()

足球- EDA的历史数据分析并可视化_第5张图片

将“日期”列转换为日期时间类型

df['date'] = pd.to_datetime(df['date'])

数据可视化

赛事分析

plt.figure(figsize=(20, 12))
sns.countplot(x='tournament', data=df)
plt.xticks(rotation=90)
plt.title('Tournament Distribution')
plt.xlabel('Tournament')
plt.ylabel('Count')
plt.tight_layout()
plt.show()

足球- EDA的历史数据分析并可视化_第6张图片

主客场比分

plt.figure(figsize=(12, 8))
plt.subplot(1, 2, 1)
sns.histplot(df['home_score'], bins=20, kde=True)
plt.title('Distribution of Home Scores')
plt.xlabel('Home Score')
plt.ylabel('Frequency')
#Setting limit for first plot
plt.ylim(0, 40000)


plt.subplot(1, 2, 2)
sns.histplot(df['away_score'], bins=20, kde=True)
plt.title('Distribution of Away Scores')
plt.xlabel('Away Score')
plt.ylabel('Frequency')
# Share y-axis between subplots
plt.ylim(0, 40000)

plt.tight_layout()
plt.show()

足球- EDA的历史数据分析并可视化_第7张图片

相关性分析

correlation_matrix = df.corr()
plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()

足球- EDA的历史数据分析并可视化_第8张图片

时间序列分析

# 为年份创建新列
df['year'] = df['date'].dt.year

#时间序列分析
plt.figure(figsize=(10, 6))
sns.lineplot(x='year', y='home_score', data=df, label='Home Score')
sns.lineplot(x='year', y='away_score', data=df, label='Away Score')
plt.title('Trends in Home and Away Scores over Time')
plt.xlabel('Year')
plt.ylabel('Score')
plt.legend()
plt.tight_layout()
plt.show()

足球- EDA的历史数据分析并可视化_第9张图片

总结

以上就是今天分享的内容

你可能感兴趣的:(数据解析之旅:发现信息的奥秘,数据分析,数据挖掘)