决策树算法

决策树

决策树(Decision Tree)首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析,本质上是通过一系列规则对数据进行分类的过程

决策树是一种典型的分类方法。其中:

  • 每个内部结点表示一个属性上的判断
  • 每个分支代表一个判断结果的输出
  • 每个叶结点代表一种分类结果。

CLS算法是早期提出的决策树学习算法,是很多决策树学习算法的基础框架。
依据其中选择分类属性的策略不同,可以得到不同的决策树算法。比较常用的决策树有ID3,C4.5和CART三种和实现,其中CART一般优于其他决策树,并且可用于回归任务。

下面我们将编写代码实现这三种决策树算法。

导入包和创建数据集

本实验所需的包不多

  • log用于计算
  • treePlotter为已经编写好的用于可视化决策树的代码,createPlot(tree)就可以调用
  • csv为对csv文件进行操作所需的包

本实验第一个使用的是天气情况数据集,属性集合A={ 天气,温度,湿度,风速}, 类别标签有两个,类别集合L={进行(yes),取消(no)}。

决策树算法_第1张图片

本实验中我们用字典嵌套的形式来表示一个决策树,如一个形如

你可能感兴趣的:(机器学习,决策树,算法,机器学习)