Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行

本文介绍基于Anaconda环境以及PyCharm软件结合,安装PyTorch深度学习框架教程。

目录

一、anaconda安装

(一)下载

(二)安装

(三)配置环境变量

(四)检查安装结果

二、PyTorch安装

(一)创建虚拟环境

(二)激活虚拟环境

(三)安装PyTorch

(四)安装torchvision

 三、PyCharm安装

(一)下载

(二)安装

(三)激活专业版

(四)创建PyCharm工程

(五)汉化教程

 四、将PyTorch环境添加到PyCharm的解释器

(一)import torch运行程序​编辑


一、anaconda安装

(一)下载

官网下载链接: https://www.anaconda.com/
清华大学开源软件镜像站:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
选择Anaconda3-2023.03-1-Windows-x86_64.exe(64位):

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第1张图片

(二)安装

1. 点击next

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第2张图片

 2. 点击I Agree

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第3张图片

3. 选择All Users后,点击Next

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第4张图片

4. 选择存放该软件的文件夹(尽量不要放在C盘),点击Next

5. 选择将anaconda加入系统变量(第一个方框打勾)

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第5张图片

(三)配置环境变量

如果上面未勾选第一个选项,则需要手动配置环境变量。

1. 打开高级系统设置,点击环境变量

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第6张图片

2.双击系统变量的Path

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第7张图片

3.点击新建,将下面四个路径依次加入到环境变量中

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第8张图片

(四)检查安装结果

按下win键+R键弹出运行框,输入cmd,弹出cmd命令行窗口

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第9张图片

1.验证anaconda环境是否安装成功:

conda --version

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第10张图片
2. 查看anaconda已经安装了哪些包

 从开始界面找到anaconda prompt,点击启动

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第11张图片
输入以下命令:

conda list

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第12张图片可以看到已经安装了numpy、sympy等常用包。

二、PyTorch安装

(一)创建虚拟环境

1. 打开anaconda prompt,输入以下命令:

conda create -n pytorch python=3.10

通过conda创建一个名为pytorch的虚拟环境,3.9是python的版本,都可以按自己需求改,一定要指定具体 python 版本。

2. 创建成功后,输入以下命令查看安装的所有环境:

conda info --envs

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第13张图片

(二)激活虚拟环境

输入以下命令:

conda activate pytorch

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第14张图片
当前面从(base)变为(pytorch)时表示此时已经切换到你所创建的pytorch虚拟环境,随后正式进入安装pytorch环节。

(三)安装PyTorch

1. 打开pytorch官网:https://pytorch.org/,点击Get Started

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第15张图片
2. 根据官网的提示,选择适合的CUDA版本,并复制command中的命令

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第16张图片

3. 打开anaconda prompt命令窗口,进入刚刚所创建的pytorch环境,输入之前复制的命令

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第17张图片
这里需要注意的是一定要在(pytorch)这个虚拟环境下运行安装。

(四)安装torchvision

        在\Anaconda\Scripts>路径中,打开cmd运行下面命令。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision

 三、PyCharm安装

(一)下载

1. 打开pycharm官网: https://www.jetbrains.com/pycharm/download/#section=windows

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第18张图片
2. 下载专业版professional

 深度学习的数据量一般很大,一般都是挂服务器上运行代码,而pycharm专业版才可以远程开发。3. 下载社区版community

(二)安装

1.点击next

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第19张图片

2. 选择安装位置,尽量不要选在C盘

3. 几个选项全部打勾选上

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第20张图片

 4. 点击install

 5. 设置环境变量

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第21张图片

(三)激活专业版

1. 作为学生或者教师可以免费激活,使用期一年,到期了好像还可以再申请,申请链接: link

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第22张图片
2. 直接购买(tb或者官方)

(四)创建PyCharm工程

 1. 打开PyCharm,点击【new Project】

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第23张图片

  2. new Project

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第24张图片

  3. Create

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第25张图片

  4. 右键,Run 'main'

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第26张图片

(五)汉化教程

1. 打开设置,点击‘File’,点击‘Settings’

2. 点击 ‘Plugins’, 输入‘chinese’,选中‘Chinese (Sinplified) Language Pack/中文语言包’,点击‘Install’

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第27张图片

 四、将PyTorch环境添加到PyCharm的解释器

1. 打开设置, file -> Settings -> Project:pythonProject

2.选择python解释器

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第28张图片

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第29张图片3.点击添加解释器,选择添加本地解释器

4.选择conda环境,并选择pytorch环境的pytorch.exe解释器

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第30张图片

Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第31张图片

 5.点击确定,等待初始化完成后,即可运行相关程序:

from __future__ import print_function
import torch
import numpy as np

x = torch.rangd(5, 3)
print(x)

arr = np.ones((3, 3))
print("arr的数据类型为:"+str(arr.dtype))

t = torch.tensor(arr)
print(t)

(一)import torch运行程序Anaconda、PyTorch和PyCharm安装教程,以及PyCharm工程创建与运行_第32张图片

你可能感兴趣的:(pytorch,pycharm,python,深度学习)