【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

文章目录

  • 一、RDD#filter 方法
    • 1、RDD#filter 方法简介
    • 2、RDD#filter 函数语法
    • 3、代码示例 - RDD#filter 方法示例
  • 二、RDD#distinct 方法
    • 1、RDD#distinct 方法简介
    • 2、代码示例 - RDD#distinct 方法示例





一、RDD#filter 方法




1、RDD#filter 方法简介


RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ;

RDD#filter 方法 不会修改原 RDD 数据 ;

使用方法 :

new_rdd = old_rdd.filter(func)

上述代码中 ,

  • old_rdd 是 原始的 RDD 对象 ,
  • 调用 filter 方法 , 传入的 func 参数是一个 函数 或者 lambda 匿名函数 , 用于定义过滤条件 ,
    • func 函数返回 True , 则保留元素 ;
    • func 函数返回 False , 则删除元素 ;
  • new_rdd 是过滤后的 RDD 对象 ;

2、RDD#filter 函数语法


RDD#filter 方法 语法 :

rdd.filter(func)

上述 方法 接受一个 函数 作为参数 , 该 函数参数 定义了要过滤的条件 ; 符合条件的 元素 保留 , 不符合条件的删除 ;

下面介绍 filter 函数中的 func 函数类型参数的类型 要求 ;


func 函数 类型说明 :

(T) -> bool

传入 filter 方法中的 func 函数参数 , 其函数类型 是 接受一个 任意类型 元素作为参数 , 并返回一个布尔值 , 该布尔值的作用是表示该元素是否应该保留在新的 RDD 中 ;

  • 返回 True 保留元素 ;
  • 返回 False 删除元素 ;


3、代码示例 - RDD#filter 方法示例


下面代码中的核心代码是 :

# 创建一个包含整数的 RDD
rdd = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9])

# 使用 filter 方法过滤出偶数, 删除奇数
even_numbers = rdd.filter(lambda x: x % 2 == 0)

# 输出过滤后的结果
print(even_numbers.collect())

上述代码中 , 原始代码是 1 到 9 之间的整数 ;

传入 lambda 匿名函数 , lambda x: x % 2 == 0 , 传入数字 ,

  • 如果是偶数返回 True , 保留元素 ;
  • 如果是 奇数 返回 False , 删除元素 ;

代码示例 :

"""
PySpark 数据处理
"""

# 导入 PySpark 相关包
from pyspark import SparkConf, SparkContext
# 为 PySpark 配置 Python 解释器
import os
os.environ['PYSPARK_PYTHON'] = "Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe"

# 创建 SparkConf 实例对象 , 该对象用于配置 Spark 任务
# setMaster("local[*]") 表示在单机模式下 本机运行
# setAppName("hello_spark") 是给 Spark 程序起一个名字
sparkConf = SparkConf() \
    .setMaster("local[*]") \
    .setAppName("hello_spark")

# 创建 PySpark 执行环境 入口对象
sc = SparkContext(conf=sparkConf)

# 打印 PySpark 版本号
print("PySpark 版本号 : ", sc.version)

# 创建一个包含整数的 RDD
rdd = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9])

# 使用 filter 方法过滤出偶数, 删除奇数
even_numbers = rdd.filter(lambda x: x % 2 == 0)

# 输出过滤后的结果
print(even_numbers.collect())

# 停止 PySpark 程序
sc.stop()

执行结果 :

Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Scripts\python.exe Y:/002_WorkSpace/PycharmProjects/HelloPython/hello.py
23/08/02 21:07:55 WARN Shell: Did not find winutils.exe: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/08/02 21:07:55 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
PySpark 版本号 :  3.4.1
[2, 4, 6, 8]

Process finished with exit code 0

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )_第1张图片





二、RDD#distinct 方法




1、RDD#distinct 方法简介


RDD#distinct 方法 用于 对 RDD 中的数据进行去重操作 , 并返回一个新的 RDD 对象 ;

RDD#distinct 方法 不会修改原来的 RDD 对象 ;


使用时 , 直接调用 RDD 对象的 distinct 方法 , 不需要传入任何参数 ;

new_rdd = old_rdd.distinct()

上述代码中 , old_rdd 是原始 RDD 对象 , new_rdd 是元素去重后的新的 RDD 对象 ;


2、代码示例 - RDD#distinct 方法示例


代码示例 :

"""
PySpark 数据处理
"""

# 导入 PySpark 相关包
from pyspark import SparkConf, SparkContext
# 为 PySpark 配置 Python 解释器
import os
os.environ['PYSPARK_PYTHON'] = "Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe"

# 创建 SparkConf 实例对象 , 该对象用于配置 Spark 任务
# setMaster("local[*]") 表示在单机模式下 本机运行
# setAppName("hello_spark") 是给 Spark 程序起一个名字
sparkConf = SparkConf() \
    .setMaster("local[*]") \
    .setAppName("hello_spark")

# 创建 PySpark 执行环境 入口对象
sc = SparkContext(conf=sparkConf)

# 打印 PySpark 版本号
print("PySpark 版本号 : ", sc.version)

# 创建一个包含整数的 RDD 对象
rdd = sc.parallelize([1, 1, 2, 2, 3, 3, 3, 4, 4, 5])

# 使用 distinct 方法去除 RDD 对象中的重复元素
distinct_numbers = rdd.distinct()

# 输出去重后的结果
print(distinct_numbers.collect())

# 停止 PySpark 程序
sc.stop()

执行结果 :

Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Scripts\python.exe Y:/002_WorkSpace/PycharmProjects/HelloPython/hello.py
23/08/02 21:16:35 WARN Shell: Did not find winutils.exe: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/08/02 21:16:35 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
PySpark 版本号 :  3.4.1
Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Lib\site-packages\pyspark\python\lib\pyspark.zip\pyspark\shuffle.py:65: UserWarning: Please install psutil to have better support with spilling
Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Lib\site-packages\pyspark\python\lib\pyspark.zip\pyspark\shuffle.py:65: UserWarning: Please install psutil to have better support with spilling
Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Lib\site-packages\pyspark\python\lib\pyspark.zip\pyspark\shuffle.py:65: UserWarning: Please install psutil to have better support with spilling
Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Lib\site-packages\pyspark\python\lib\pyspark.zip\pyspark\shuffle.py:65: UserWarning: Please install psutil to have better support with spilling
Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Lib\site-packages\pyspark\python\lib\pyspark.zip\pyspark\shuffle.py:65: UserWarning: Please install psutil to have better support with spilling
[1, 2, 3, 4, 5]

Process finished with exit code 0

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )_第2张图片

你可能感兴趣的:(Python,python,Spark,PySpark,PyCharm,数据处理)