- R.E.D.算法:革新文本分类的半监督学习新范式
真智AI
算法r语言分类人工智能学习
随着大型语言模型(LLMs)在解决问题方面的应用进入新时代,只有少数问题仍然存在不尽如人意的解决方案。大多数分类问题(在概念验证层面)可以通过良好的提示工程技术和自适应的上下文学习(ICL)示例,利用LLMs以70-90%的精确度/F1分数来解决。当您希望持续实现高于此水平的性能时——当提示工程不再足够时,会发生什么?分类难题文本分类是监督学习中最古老且最易理解的示例之一。鉴于这一前提,构建能够处
- 国内外的网络安全成难题,IPLOOK 2022年用产品筑起“护城墙”
爱浦路 IPLOOK
网络安全安全架构
《爱尔兰时报》和爱尔兰国家广播电台(RTE)于12月31日对2021年爱尔兰科技行业的赢家和弱点进行了年终盘点。双方纷纷表示,2021年爱尔兰科技行业最大的弱点是爱尔兰的网络安全,这一年是一场前所未有的灾难。随着人工智能、大数据、5G等新兴技术的发展,企业面临的威胁日益增加,信息安全的重要性变得越来越突显。现在我们把视线从爱尔兰的网络安全问题拉回到国内的网络安全现状。我国对网络安全问题保持时刻警惕
- 【大模型学习路线】从月薪6K到年薪35W,普通二本生转行大模型的逆袭之路:我的500小时崩溃实录与实战秘籍(附保姆级学习路线)
AGI大模型学习
学习人工智能大模型应用程序员AI大模型AI大模型
摘要:26岁机械专业零基础转大模型,被面试官羞辱“非科班别做梦”,5个月死磕源码,现拿下3个大厂offer。踩过所有新人会踩的坑,总结出普通人高效突围的4个阶段+7个杀手级项目。(文末送自研《大模型避坑指南》+120G学习资料包)一、血泪教训:这些弯路我替你走了(小白必看)2023年3月12日,我在工地上画完第108张CAD图纸后,突然收到大学班群消息:“XX同学入职字节AILab,年薪50W+”
- CSS3学习教程,从入门到精通,CSS3 布局语法知识点及案例代码(15)
知识分享小能手
编程语言如门前端开发网页开发css3学习css前端html5htmlJava后端开发
CSS3布局知识点及案例代码一、盒模型知识点CSS盒模型是理解CSS布局的基础,它包括内容(content)、内边距(padding)、边框(border)和外边距(margin)四个部分。content:盒子的内容区域,定义宽度和高度。padding:内容与边框之间的空间,可控制内容与边框的距离。border:围绕内容和内边距的边框,可设置边框的样式、宽度和颜色。margin:边框与其他元素之间
- CSS3学习教程,从入门到精通,CSS3 盒子模型语法知识点及案例代码(13)
知识分享小能手
编程语言如门前端开发网页开发css3学习前端csshtml5htmlJava后端开发
CSS3盒子模型语法知识点及案例代码CSS3盒子模型概述CSS3盒子模型是用于控制网页元素布局和外观的重要工具。它包括标准盒子模型、IE盒子模型以及CSS3引入的弹性盒子模型和网格布局模型。一、标准盒子模型(StandardBoxModel)语法selector{width:value;height:value;padding:value;border:value;margin:value;}wi
- 10初识Spring MVC框架
TechLens
JAVAEE笔记servletspringjava
学习内容一、回顾1.JSPModel2架构模型采用JSP+Servlet+JavaBean技术实现了页面显示、流程控制和业务逻辑的分离Jsp负责生成动态网页,只用做显示页面;Servlet负责流程控制,用来处理各种请求的分派;JavaBeans负责业务逻辑,对数据库的操作流程控制等通用逻辑以硬编码的方式实现,每次开发新的Web应用程序均需重新编写流程控制、通用逻辑代码2.WebMVC应用框架Spr
- 文档处理控件Aspose.Words 教程:.NET版中增强的 AI 文档摘要功能
CodeCraft Studio
控件文档管理人工智能excelwordpdf
Aspose.Words是一个功能强大的Word文档处理库。它可以帮助开发人员自动编辑、转换和处理文档。自24.11版以来,Aspose.Wordsfor.NET提供了AI驱动的文档摘要功能,使用户能够从冗长的文本中快速提取关键见解。在25.2版中,我们通过使用Anthropic生成语言模型进行摘要扩展了此功能。本篇内容将对此做讨论的。Aspose.wordsfor.Net最新版下载文档摘要有何新
- 跨域自监督学习:打破数据壁垒的创新突破
mslion
学习人工智能跨模态学习深度学习计算机视觉自监督表示学习
近年来,跨域学习和跨模态学习在多个应用领域中取得了显著的进展。尽管不同领域和模态之间的数据分布差异和标注数据稀缺常常带来挑战,但越来越多的研究集中在如何通过自监督学习和无监督领域适应技术来解决这些问题。自监督学习作为一种无需大量标注数据的方法,能够有效地从未标注数据中提取有用特征,并在跨域或跨模态设置中增强模型的迁移能力和泛化能力。此外,如何处理源域和目标域之间的差异,使得模型能够在多领域或跨模态
- 前端面试常见的计算机网络内容梳理
GISer_Jinger
前端javascript
前端面试常见的计算机网络内容梳理,我得从搜索结果里找相关的信息。先看看各个网页的内容。网页1和网页2主要讲OSI模型、TCP/IP模型,ARP、DNS、TCP/UDP区别这些基础概念,这些都是常考的点。网页3提到了TCP三次握手、HTTP缓存、跨域方法,还有CDN原理,这些都是前端面试的重点。网页4详细讨论了HTTP请求方法、状态码、请求头和响应头,这些内容也很关键。网页5提到了HTTPS加密原理
- 初识Spring MVC并使用Maven搭建SpringMVC
NPU_Li Meng
SpringSpringMVCMavenWeb
SpringMVC基于MVC模式(模型(Model)-视图(View)-控制器(Controller))实现,能够帮助你构建像Spring框架那样灵活和松耦合的Web应用程序。核心类与接口DispatcherServlet前置控制器HandlerMapping处理器映射Controller控制器ViewResolver视图解析器View视图处理SpringMVC的请求流向当用户在浏览器中点击链接或
- YOLOv8 改进:添加 AKConv(任意采样形状和任意数目参数的卷积)
鱼弦
人工智能时代YOLO
YOLOv8改进:添加AKConv(任意采样形状和任意数目参数的卷积)引言在目标检测领域中,YOLO(YouOnlyLookOnce)系列因其速度和效率而受到广泛关注。为了进一步优化模型性能,可以引入创新的卷积操作,例如AKConv,即“任意采样形状和任意数目参数的卷积”。这种卷积能够灵活地调整采样策略,以更好地适应输入特征。技术背景传统卷积运算在采样位置和参数数量上具有固定性,这限制了其对复杂几
- Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
m0_74825656
面试学习路线阿里巴巴transformer架构深度学习
1.LLM基础架构类型DenseTransformerMoE(MixtureofExperts)TransformerHybrid-MoETransformer2.Transformer按照编码方式分类单向自回归模型(如早期GPT系列)双向模型(如BERT)编码器-解码器模型(如BART,T5)DenseTransformerDenseTransformer的优势是什么DenseTransform
- 【微服务】SpringBoot整合LangChain4j 操作AI大模型实战详解
小码农叔叔
AI大模型实战与应用springboot入门到精通LangChain4jLangChain4j总结LangChain4j使用LangChain4j实战LangChain4j详解
目录一、前言二、Langchain4j概述2.1Langchain4j介绍2.1.1Langchain4j是什么2.1.2主要特点2.2Langchain4j核心组件介绍2.3Langchain4j核心优势2.4Langchain4j核心应用场景三、SpringBoot整合LangChain4j组件使用3.1前置准备3.1.1获取apikey3.1.2导入基础依赖3.1.3添加配置文件3.2对话能
- 大模型提示词工程师的自我修养-应用二(RAG数据合成与数据多样性问题的解决) -(专题4)
AI专题精讲
大模型专题系列人工智能
1.生成数据大型语言模型(LLMs)具有生成连贯文本的强大能力。通过有效的提示策略,可以引导模型生成更好、一致且更有事实依据的响应。LLMs也特别适用于生成数据,这对于进行各种实验和评估非常有用。例如,我们可以用它来为情感分类器生成快速样本,如下所示:提示词生成10个情感分析的示例。示例分为正面或负面类别。生成2个负面示例和8个正面示例。示例如下格式:Q:A:输出Q:我刚刚得到了最棒的消息!A:正
- 在Mac M1/M2芯片上完美安装DeepCTR库:避坑指南与实战验证
ku_code_ku
机器学习macos推荐算法推荐系统
让推荐算法在AppleSilicon上全速运行概述作为推荐系统领域的最经常用的明星库,DeepCTR集成了CTR预估、多任务学习等前沿模型实现。但在AppleSilicon架构的Mac设备上,安装过程常因ARM架构适配、依赖库版本冲突等问题受阻。本文通过20+次环境搭建实测,总结出最稳定的安装方案。关键版本说明(2024年验证)组件推荐版本注意事项Python3.10.x向下兼容至3.7,但3.1
- 软件架构设计艺术(从一个案例出发,成为优秀的软件架构师)
编码时空的诗意行者
软件架构设计开发语言系统架构软件设计设计模式
架构(建模)本质上是一种抽象,其目的是通过归类来减轻认知负担,避免重复思考和工作,提升计算能力。“通用”是建模的第一步,而“复用”则是确保建模有效性的关键。通过将共享属性或行为提取成独立模型,可以提高系统的灵活性和扩展性,同时也减少了错误的可能性。案例假设一家汽车经销商销售新车,并提供售后服务。客户可以在经销商处购买新车,如果车辆出现问题,可以返回经销商进行维修。我们准备为这家公司业务提供线上管理
- 深入理解 Java 内存模型(JMM):原理、可见性与并发控制
全栈探索者chen
javajava开发语言缓存程序人生数据库JMM内存
深入理解Java内存模型(JMM):原理、可见性与并发控制1.引言在多线程编程中,内存可见性、指令重排序和线程同步是开发者必须理解的核心概念。Java内存模型(JMM,JavaMemoryModel)定义了一组规则,确保Java程序在并发环境下的线程安全性和一致性。本文将深入剖析JMM的原理,并通过代码示例展示如何正确控制并发。2.什么是Java内存模型(JMM)?Java内存模型(JMM)是Ja
- 利用AI与MySQL提升工业物联网健康监测的智慧水平——构建预测性维护的新纪元
墨夶
数据库学习资料1人工智能mysql物联网
在工业4.0和智能制造的大背景下,如何确保生产设备的高效稳定运行成为企业竞争力的核心要素之一。传统的事后维修方式已经难以满足现代制造业的需求,而基于人工智能(AI)的预测性维护系统则为这一挑战提供了全新的解决方案。今天,我们将深入探讨如何结合AI技术和MySQL数据库,打造一个智能、高效的工业物联网(IIoT)健康监测平台,助力企业在激烈的市场竞争中脱颖而出。一、为什么选择AI+MySQL?1.A
- 股票市场的量化交易策略如何应对市场情绪变化?
云策量化
程序化炒股量化软件量化交易量化炒股QMT股票交易PTrade量化交易股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》股票市场的量化交易策略如何应对市场情绪变化?在股票市场中,量化交易策略是一种基于数学模型和算法的交易方式,它通过分析历史数据来预测未来价格走势,并据此制定交易决策。然而,市场情绪的变化对股票价格有着不可忽视的影响。本文将探讨量化交易策略如何应对市场情绪的变化,并提供一些具体的代码示例。一、市场情绪的重要性市场情绪是指投资者对市
- 股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?
云策量化
量化交易量化软件量化炒股量化炒股QMT量化交易入门教程PTrade股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》标题:股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?正文:在金融投资的世界里,量化投资以其科学、系统和客观的特点,成为了众多投资者追求的“圣杯”。而在量化投资领域,蒋菲以其独特的大数据量化投资模型而闻名。本文将深入探讨蒋菲如何利用大数据优化其量化投资模型,以及她的数据来源有哪些。一、量化投资模型的优化
- 【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理
qzw1210
gpt人工智能深度学习
搭建本地大模型GPT-NeoX:详细步骤及常见问题处理GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。1.系统要求1.1硬件要求1.2软件要求操作系统:Linux(推荐Ubuntu20.04或更高版本)CUDA:11.2或更高版本Python
- Deepseek 个性化决策输出
meisongqing
DeepSeek个性化
Deepseek个性化决策输出:基于用户画像的定制化内容生成在教育场景中,通过构建动态用户画像与智能决策模型,教育数字人可基于学生水平实时调整讲解深度,实现精准化、个性化的学习支持。以下是核心实现框架与关键步骤:1.用户画像构建:多维度数据融合数据采集:显性数据:年龄、学科成绩、测试结果、学习时长、知识点掌握进度。隐性数据:交互行为(如答题犹豫时间、回放次数)、情绪识别(语音/表情分析)、认知负荷
- 我与DeepSeek读《大型网站技术架构》- 总结
诺亚凹凸曼
架构
文章目录读后感一、总结二、反思三、创新四、展望当代大型网站架构一、架构分层模型二、关键组件与技术选型三、架构演进策略四、架构突破口读后感一、总结架构演化优先于设计大型网站架构不是预先设计的产物,而是通过反复迭代和试错演化形成的。技术选型的核心动机是对业务需求的深刻理解,而非盲目模仿。典型案例包括淘宝架构因业务爆发力被迫转型为分布式系统。开放与协作的价值互联网的开放生态通过API经济(如淘宝Open
- 密码学,算法在人工智能的实战利用
china—hbaby
人工智能密码学
在人工智能(AI)的快速发展中,数据安全和隐私保护成为了核心议题。密码学,作为保护信息安全的基石,其在AI领域的应用显得尤为重要。本文将探讨密码学在AI中的利用,并提供一些代码示例来展示其实际应用。密码学的概述即常用加密方式密码学(Cryptography)是数学和计算机科学的一个分支,它涉及保护信息的安全性和隐私性。密码学的主要目标是确保信息在传输过程中不被未授权的第三方读取或篡改,以及确保信息
- 深入探讨Spring MVC:原理、架构与实践
luckilyil
开发框架springmvc架构
SpringMVC原理与架构解析1.SpringMVC概述SpringMVC是Spring框架中的一个模块,专注于实现Web应用的MVC设计模式。它通过将应用逻辑分为模型(Model)、视图(View)和控制器(Controller),使得开发人员能够清晰地组织代码,提高开发效率和可维护性。2.SpringMVC的核心组件SpringMVC的核心组件包括:DispatcherServlet:作为前
- 【人工智能时代】-人工智能发展史:1900~2023
xiaoli8748_软件开发
人工智能时代人工智能搜索引擎
第一阶段:人工智能发展历史:1900-19591909年西班牙工程师LeonardoTorresyQuevedo发明了“Occultus”,这是一个可以自动执行国际象棋对弈的机器,预示了未来的计算智能。
- LLMOps 是什么?
AI Agent首席体验官
人工智能chatgpt
1.LLMOps是什么?LLMOps(LargeLanguageModelOperations)指的是一系列用于管理、部署和优化大规模语言模型(LLMs)的操作和实践。这些操作可以涵盖多个领域,例如模型的训练、推理优化、部署、监控、故障排除等。在实际应用中,LLMOps的目标是提高语言模型的效率和效果,确保模型能够在各种实际场景中顺利运行。通常,它包括以下几个关键方面:模型训练:如何高效地训练大规
- 前端技术学习记录:react+dvajs+ant design实现暴走计算器的页面重构(二)
大泡泡糖
学习记录reactjs前端gitwebstorm
前端技术学习记录:react+dvajs+antdesign实现暴走计算器的页面重构(二)前言定义Modelconnect起来更新state拥抱变化主题切换更换页面获取当前设备类型编写武学选择前言www定义Model完成UI后,现在开始处理数据和逻辑。dva通过model的概念把一个领域的模型管理起来,包含同步更新state的reducers,处理异步逻辑的effects,订阅数据源的subscr
- Cursor44.11 无限续杯攻略:持续畅享 AI 编程利器
不会算法的小灰
人工智能编辑器vscodeAI编程经验分享
一、引言在当今数字化快速发展的时代,高效的编程工具对于开发者来说如同珍宝。Cursor作为一款基于VSCode二次开发的强大AI编程编辑器,凭借其内置的多种AI大模型,如GPT-4、GPT-4o、Claude-3.5以及近期热门的DeepSeek满血版R1,为开发者提供了前所未有的编程体验。它能够快速生成代码、精准修复错误、智能优化逻辑等,极大地提升了编程效率。然而,新用户注册Cursor虽可获得
- 2024MathorCup数学建模之——MathorCup奖杯”获得者经验思路分享
美赛数学建模
数学建模
一、经验分享1.工具选择:顺手即可。Matlab和Python都是比较主流的选择,二者的应用场合各有不同。Python在数据分析、深度学习方面的优势愈发明显,而Matlab更适合进行物理仿真和数值计算。不过随着Python社区不断发展,其功能也愈发全面与强大,因此我们比较推荐学有余力的情况下可以更早接触Python。2.模型算法:多多益善。不一定要精通所有的算法,但是手上至少要准备一些常用的算法(
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f