树(Tree)——Java语言

树(Tree)——Java语言

    • 一,简单介绍
    • 二,什么是树(Tree)
        • 2.1 树的定义:
        • 2.2 结点的分类
        • 2.3 结点之间的关系
        • 2.4 树的深度
        • 2.4 森林
    • 三,二叉树
        • 3.1 用java构建一个二叉树:
        • 3.2 二叉树的定义
        • 3.3 二叉树特点
        • 3.4 特殊二叉树
          • 3.4.1 斜树
          • 3.4.2 满二叉树
          • 3.4.3 完全二叉树
    • 四、遍历二叉树
        • 4.1 前序遍历
        • 4.2 中序遍历算法
        • 4.3 后序遍历
    • 五、一道根据前中序遍历重构二叉树的面试题
        • 5.1思路解析:
          • 5.1.1 左边子树的确定
          • 5.1.2右边子树的确定
          • 代码实现

一,简单介绍

树(Tree),这种数据结构,自己可能平时没有很注重算法的锻炼,因此对于树,大多存在于知道和会用的程度(不是很熟练),因此自己准备好好重新捋一捋。毕竟树这个数据结构太重要了。
总结的内容是基于《大话数据结构》一书,写的挺不错的,语言简洁,还有点小故事帮助你加深理解。图片主要来源《大话数据结构》和网络

二,什么是树(Tree)

  树是一种一对多的数据结构,线性表,栈,队列,串都是一对一的线性数据结构。

2.1 树的定义:

树(Tree)是n(n>=0)个结点的有限集。n=0时,称为空树。在任意一颗非空树中:
(1)有且仅有一个结点被称为根(Root)
(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,……,其中每一个集合本身又是一棵树,并且称为根的子树。
解释来源:《大话数据结构》

树(Tree)——Java语言_第1张图片
解释:

  • 每个集合本身是一棵树:这本图中,表现为E,F,G和他们的根B构成了一棵树。

  • 互不相交可以理解为,两个树之间不会有交叉,如果C到G有连线,就是错误的,因为他们交叉了。

2.2 结点的分类

树的结点包含一个数据元素及若干指向其子树的分支。

  • 度:结点拥有的子树。
  • 叶结点或终端结点:度为0的结点。
  • 非终端结点或分支结点:度不为0的结点。
  • 除根结点外,分支结点也称为内部结点。
  • 树的度:树内各结点的度的最大值
    树(Tree)——Java语言_第2张图片

2.3 结点之间的关系

树(Tree)——Java语言_第3张图片
图片来源:《大话数据结构》

2.4 树的深度

树中结点的最大层次称为树的深度或高度。
树(Tree)——Java语言_第4张图片

2.4 森林

森林是m(m>=0)棵互不相交的树的集合。
树中每个结点而言,其子树的集合即为森林。T1,T2,T3即可理解为森林。
树(Tree)——Java语言_第5张图片

三,二叉树

  首先,java中有树这种封装好的数据结构吗?
答案是:肯定是有的。很多地方都蕴含在树这种数据结构,TreeMap,TreeSet,TreeNode,很多其他的数据结构中也使用了树这种数据结构。但是,这些蕴含树的封装好的类,和我们需要使用的,那种较为简单的树有相比,复杂的多。因此,二叉树还是需要自己进行构建。

3.1 用java构建一个二叉树:

  • 结点定义
public class TreeNode {
    private int value;//结点的值
    private TreeNode node;
    private TreeNode left;//左子结点
    private TreeNode right;//右子结点

    /**
     *getter and setter方法
     */
}
public class TreeDemo {
    public static void main(String[] args) {
        //二叉树的组装
        TreeNode treeNode = new TreeNode(2);
        TreeNode treeNode1 = new TreeNode(1);
        TreeNode treeNode2 = new TreeNode(3);
        treeNode.setLeft(treeNode1);
        treeNode.setRight(treeNode2);
    }
}

树(Tree)——Java语言_第6张图片
这样的代码就完成了一个如图的二叉树的构建。

3.2 二叉树的定义

二叉树是n (n>=0) 个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的,分别称为根结点的左子树和右子树的二叉树组成。

二叉树适合的建模场景:开关,0和1,真和假,上和下,对与错,正面与反面。

3.3 二叉树特点

  • 每个结点只有最多两棵子树,所以二叉树中不存在度大于2的结点。
  • 左子树和右子树是有顺序的。左小右大。
  • 即使只有一个子树也需要区别是左子树还是右子树。

3.4 特殊二叉树

3.4.1 斜树

  所有的结点都只有左子树的二叉树叫左斜树。反之,称为右斜树。结点个数 = 结点深度
树(Tree)——Java语言_第7张图片

3.4.2 满二叉树

一棵二叉树中,所有的分支节点都存在左右子树,并且所有的叶子都在同一层上,这样的二叉树称为满二叉树。
树(Tree)——Java语言_第8张图片
特点:(1)叶子在最下一层(2)非叶子节点的度一定是2.(3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子个数最多。

3.4.3 完全二叉树

对于一棵具有n个结点的二叉树按层序编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这颗二叉树称为完全二叉树。完全二叉树在缺失时,只能缺失右结点。

树(Tree)——Java语言_第9张图片

四、遍历二叉树

4.1 前序遍历

遍历规则:若二叉树是空树,则空操作返回,否则先访问根结点,然后前序遍历左子树,在前序遍历右子树。(根—》左—》右)

顺序:
树(Tree)——Java语言_第10张图片
代码:

public class TreeDemo {
    public static void main(String[] args) {
        //二叉树的组装
        TreeNode treeNodeA = new TreeNode("A");
        TreeNode treeNodeB = new TreeNode("B");
        TreeNode treeNodeC = new TreeNode("C");
        TreeNode treeNodeD = new TreeNode("D");
        TreeNode treeNodeE= new TreeNode("E");
        TreeNode treeNodeF = new TreeNode("F");
        TreeNode treeNodeG = new TreeNode("G");
        TreeNode treeNodeH = new TreeNode("H");
        TreeNode treeNodeI = new TreeNode("I");
        treeNodeA.setLeft(treeNodeB);
        treeNodeA.setRight(treeNodeC);
        treeNodeB.setLeft(treeNodeD);
        treeNodeD.setLeft(treeNodeG);
        treeNodeD.setRight(treeNodeH);
        treeNodeC.setLeft(treeNodeE);
        treeNodeC.setRight(treeNodeF);
        treeNodeE.setRight(treeNodeI);
        preOrderTraverse(treeNodeA);
    }
    //前序遍历法,递归实现
    static void preOrderTraverse(TreeNode node){
        if(node==null){
            return;
        }
        System.out.print(node.getValue()+"->");
        preOrderTraverse(node.getLeft());
        preOrderTraverse(node.getRight());
    }
}

在这里插入图片描述

4.2 中序遍历算法

遍历规则:中序遍历根节点的左子树,然后访问根节点,最后在是右子树。(顺序:左—》中—》右)
树(Tree)——Java语言_第11张图片
代码:

    //中序遍历,递归实现
    static void InOrderTraverse(TreeNode node){
        if(node==null){
            return;
        }
        InOrderTraverse(node.getLeft());
        System.out.print(node.getValue()+"->");
        InOrderTraverse(node.getRight());
    }

在这里插入图片描述

4.3 后序遍历

规则:若树是空,则返回空操作,否则就是从左到右先叶子节点后根节点的顺序。(左——》右——》根)
树(Tree)——Java语言_第12张图片
代码:

    //后序遍历
    static void PostOrderTraver(TreeNode node){
        if(node == null){
            return;
        }
        PostOrderTraver(node.getLeft());
        PostOrderTraver(node.getRight());
        System.out.print(node.getValue()+"->");
    }

五、一道根据前中序遍历重构二叉树的面试题

题目描述:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
来源:牛客网

5.1思路解析:

前序遍历:根,左,右(前序遍历来确定根)
中序遍历:左,中,右(中序遍历确定左右孩子)

5.1.1 左边子树的确定

1,首先,根据前序遍历找到整个树的根结点。题中为 1
2,由中序遍历通过根结点分割左右子树。1的左子树的结点有:4,7,2。有子树的结点有5,3,8,6
3,对于左子树的结点:4,7,2。由前序遍历1,2可知,21的左孩子结点,而4,7则应该为孙子结点,同时,4,7,应该是2的子结点或孙子结点。
4,由前序遍历2,4可知,42的左孩子。
5,由前序遍历1,2,4,7可知,74的子节点。由中序遍历4,7可知,7在4的右边,为4的右孩子。
至此,左边子树构建完成:
树(Tree)——Java语言_第13张图片

5.1.2右边子树的确定

1,由根结点在中序遍历中的位置:4,7,2,1,5,3,8,6。可知,右边子树的节点还剩5,3,8,6
2,根据前序遍历:1,2,4,7,3,5,8,6可知,31的右子结点。
树(Tree)——Java语言_第14张图片
3,,由3在中序遍历5,3,8,6的结果可知,53的左子结点。而86的位置,这里可能需要特别区分一下。不能根据8在3的右边就判断为右子树。
4,在前序遍历3,5,6,8中可以看到68的前面即68的双亲节点。而由中序遍历5,3,8,6可知,86的左子节点。
树(Tree)——Java语言_第15张图片

代码实现

这里我们用了一个类似于递归的思想,先通过先序遍历找根,再通过中序遍历找左右子结点,这样循环往复。
因此,重建的代码可以这样来设计:

    public static TreeNode reConstructBinaryTree(int [] pre,int [] in) {
        if(pre.length==0&&in.length==0){
            return null;
        }
        //前序遍历序列{1,2,4,7,3,5,6,8}       中序遍历序列{4,7,2,1,5,3,8,6}
        //由前序获得根节点
        TreeNode treeRoot = new TreeNode(pre[0]);
        //在通过中序遍历来分割左右子树
        for(int i = 0;i<in.length;i++){
            if(pre[0] == in[i]){
                //递归的进行左右子树的根,左结点,右结点的分割
                //进行左子树的构建和分割
                treeRoot.left = reConstructBinaryTree(Arrays.copyOfRange(pre,1,i+1),Arrays.copyOfRange(in,0,i));
                treeRoot.right = reConstructBinaryTree(Arrays.copyOfRange(pre,i+1,pre.length),Arrays.copyOfRange(in,i+1,in.length));
            }
        }
        return treeRoot;
    }

你可能感兴趣的:(数据结构,数据结构,算法,java,二叉树)