描述符:
select:位运算实现 监控的描述符数量有限(32位机1024,64位机2048) 效率差
poll:链表实现,监控的描述符数量不限 效率差
epoll:效率最高,监控的描述符数量不限
select
int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);
/* 功能:监听多个描述符,阻塞等待有一个或者多个文件描述符,准备就绪。
内核将没有准备就绪的文件描述符,从集合中清掉了。
参数: nfds 最大文件描述符数 ,加1
readfds 读文件描述符集合
writefds 写文件描述符集合
exceptfds 其他异常的文件描述符集合
timeout 超时时间(NULL)
返回值:当timeout为NULL时返回0,成功:准备好的文件描述的个数 出错:-1
当timeout不为NULL时,如超时设置为0,则select为非阻塞,超时设置 > 0,则无描述符可被操作的情况下阻塞指定长度的时间
*/
void FD_CLR(int fd, fd_set *set);
//功能:将fd 从集合中清除掉
int FD_ISSET(int fd, fd_set *set);
//功能:判断fd 是否存在于集合中
void FD_SET(int fd, fd_set *set);
//功能:将fd 添加到集合中
void FD_ZERO(fd_set *set);
//功能:将集合清零
//使用模型:
while(1)
{
/*得到最大的描述符maxfd*/
/*FD_ZERO清空描述符集合*/
/*将被监控描述符加到相应集合rfds里 FD_SET*/
/*设置超时*/
ret = select(maxfd+1,&rfds,&wfds,NULL,NULL);
if(ret < 0)
{
if(errno == EINTR)//错误时信号引起的
{
continue;
}
else
{
break;
}
}
else if(ret == 0)
{//超时
//.....
}
else
{ //> 0 ret为可被操作的描述符个数
if(FD_ISSET(fd1,&rfds))
{//读数据
//....
}
if(FD_ISSET(fd2,&rfds))
{//读数据
//....
}
///.....
if(FD_ISSET(fd1,&wfds))
{//写数据
//....
}
}
}
void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p);
/*功能:将等待队列头添加至poll_table表中
参数:struct file :设备文件
Wait_queue_head_t :等待队列头
Poll_table :poll_table表
*/
/*该函数与select、poll、epoll_wait函数相对应,协助这些多路监控函数判断本设备是否有数据可读写*/
unsigned int xxx_poll(struct file *filp, poll_table *wait) //函数名初始化给struct file_operations的成员.poll
{
unsigned int mask = 0;
/*
1. 将所有等待队列头加入poll_table表中
2. 判断是否可读,如可读则mask |= POLLIN | POLLRDNORM;
3. 判断是否可写,如可写则mask |= POLLOUT | POLLWRNORM;
*/
return mask;
}
mychar_poll.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "mychar.h"
#define BUF_LEN 100
int major = 11; //主设备号
int minor = 0; //次设备号
int char_num = 1; //设备号数量
struct mychar_dev
{
struct cdev mydev;
char mydev_buf[BUF_LEN];
int curlen;
wait_queue_head_t rq;
wait_queue_head_t wq;
};
struct mychar_dev gmydev;
int mychar_open (struct inode *pnode, struct file *pfile)//打开设备
{
pfile->private_data = (void *) (container_of(pnode->i_cdev, struct mychar_dev, mydev));
printk("open\n");
return 0;
}
int mychar_close(struct inode *pnode, struct file *pfile)//关闭设备
{
printk("close\n");
return 0;
}
ssize_t mychar_read (struct file *pfile, char __user *puser, size_t count, loff_t *p_pos) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int size = 0;
int ret = 0;
/* 判断是否有数据可读 */
if(pmydev->curlen <= 0) {
if(pfile->f_flags & O_NONBLOCK) { //非阻塞
printk("O_NONBLOCK Not Data Read\n");
return -1;
} else { //阻塞
/* 睡眠 当curlen>0 时返回 */
ret = wait_event_interruptible(pmydev->rq, pmydev->curlen > 0);
if(ret) {
return -ERESTARTSYS;
}
}
}
// 确定要读取的数据长度,如果请求大于设备当前数据长度,则读取全部可用数据
if (count > pmydev->curlen) {
size = pmydev->curlen;
}
else {
size = count;
}
// 将设备数据复制到用户空间缓冲区
ret = copy_to_user(puser, pmydev->mydev_buf, size);
if(ret) {
printk("copy_to_user failed\n");
return -1;
}
// 移动设备内部缓冲区,去除已读取的数据
memcpy(pmydev->mydev_buf, pmydev->mydev_buf + size, pmydev->curlen - size);
pmydev->curlen -= size;
wake_up_interruptible(&pmydev->wq);
// 返回实际读取的字节数
return size;
}
ssize_t mychar_write (struct file *pfile, const char __user *puser, size_t count, loff_t *p_pos) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int size = 0;
int ret = 0;
if(pmydev->curlen >= BUF_LEN) {
if(pfile->f_flags & O_NONBLOCK) { //非阻塞
printk("O_NONBLOCK Can Not Write Data\n");
return -1;
} else { //阻塞
ret = wait_event_interruptible(pmydev->wq, pmydev->curlen < BUF_LEN);
if(ret) {
return -ERESTARTSYS;
}
}
}
// 确定要写入的数据长度,如果请求大于设备缓冲区剩余空间,则写入剩余空间大小
if (count > BUF_LEN - pmydev->curlen) {
size = BUF_LEN - pmydev->curlen;
}
else {
size = count;
}
// 从用户空间复制数据到设备缓冲区
ret = copy_from_user(pmydev->mydev_buf + pmydev->curlen, puser, size);
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
// 更新设备缓冲区中的数据长度
pmydev->curlen += size;
/* 唤醒读阻塞 */
wake_up_interruptible(&pmydev->rq);
// 返回实际写入的字节数
return size;
}
long mychar_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg)
{
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int __user *pret = (int *)arg;
int maxlen = BUF_LEN;
int ret = 0;
switch(cmd) {
case MYCHAR_IOCTL_GET_MAXLEN:
ret = copy_to_user(pret, &maxlen, sizeof(int));
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
break;
case MYCHAR_IOCTL_GET_CURLEN:
ret = copy_to_user(pret, &pmydev->curlen, sizeof(int));
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
break;
default:
printk("The is a know\n");
return -1;
}
return 0;
}
unsigned int mychar_poll(struct file *pfile, poll_table *ptb) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
unsigned int mask = 0;
poll_wait(pfile, &pmydev->rq, ptb);
poll_wait(pfile, &pmydev->wq, ptb);
if(pmydev->curlen > 0) {
mask |= POLLIN | POLLRDNORM;
}
if(pmydev->curlen < BUF_LEN) {
mask |= POLLOUT | POLLWRNORM;
}
return mask;
}
struct file_operations myops = {
.owner = THIS_MODULE,
.open = mychar_open,
.read = mychar_read,
.write = mychar_write,
.unlocked_ioctl = mychar_ioctl,
.poll = mychar_poll,
};
int __init mychar_init(void)
{
int ret = 0;
dev_t devno = MKDEV(major, minor);
/* 手动申请设备号 */
ret = register_chrdev_region(devno, char_num, "mychar");
if (ret) {
/* 动态申请设备号 */
ret = alloc_chrdev_region(&devno, minor, char_num, "mychar");
if(ret){
printk("get devno failed\n");
return -1;
}
/*申请成功 更新设备号*/
major = MAJOR(devno);
}
/* 给struct cdev对象指定操作函数集 */
cdev_init(&gmydev.mydev, &myops);
/* 将struct cdev对象添加到内核对应的数据结构中 */
gmydev.mydev.owner = THIS_MODULE;
cdev_add(&gmydev.mydev, devno, char_num);
/* 初始化 */
init_waitqueue_head(&gmydev.rq);
init_waitqueue_head(&gmydev.wq);
return 0;
}
void __exit mychar_exit(void)
{
dev_t devno = MKDEV(major, minor);
printk("exit %d\n", devno);
/* 从内核中移除一个字符设备 */
cdev_del(&gmydev.mydev);
/* 回收设备号 */
unregister_chrdev_region(devno, char_num);
}
MODULE_LICENSE("GPL");
module_init(mychar_init);
module_exit(mychar_exit);
testmychar_select.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "mychar.h"
int main(int argc, char *argv[])
{
int fd = -1;
char buf[32] = "";
int ret = 0;
fd_set rfds;
if(argc < 2) {
printf("The argument is too few\n");
return -1;
}
fd = open(argv[1], O_RDWR);
if(fd < 0) {
perror("open");
return -1;
}
while(1) {
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
ret = select(fd + 1, &rfds, NULL, NULL,NULL);
if(ret < 0) {
if(errno == EINTR) {
continue;
} else {
printf("select errno\n");
break;
}
}
if(FD_ISSET(fd, &rfds)) {
read(fd, buf, 8);
printf("buf = %s\n", buf);
}
}
close(fd);
fd = -1;
return 0;
}
signal(SIGIO, input_handler); //注册信号处理函数
fcntl(fd, F_SETOWN, getpid());//将描述符设置给对应进程,好由描述符获知PID
oflags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, oflags | FASYNC);//将该设备的IO模式设置成信号驱动模式
void input_handler(int signum)//应用自己实现的信号处理函数,在此函数中完成读写
{
//读数据
}
//应用模板
int main()
{
int fd = open("/dev/xxxx",O_RDONLY);
fcntl(fd, F_SETOWN, getpid());
oflags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, oflags | FASYNC);
signal(SIGIO,xxxx_handler);
//......
}
void xxxx_handle(int signo)
{//读写数据
}
/*设备结构中添加如下成员*/
struct fasync_struct *pasync_obj;
/*应用调用fcntl设置FASYNC时调用该函数产生异步通知结构对象,并将其地址设置到设备结构成员中*/
static int hello_fasync(int fd, struct file *filp, int mode) //函数名初始化给struct file_operations的成员.fasync
{
struct hello_device *dev = filp->private_data;
return fasync_helper(fd, filp, mode, &dev->pasync_obj);
}
/*写函数中有数据可读时向应用层发信号*/
if (dev->pasync_obj)
kill_fasync(&dev->pasync_obj, SIGIO, POLL_IN);
/*release函数中释放异步通知结构对象*/
if (dev->pasync_obj)
fasync_helper(-1, filp, 0, &dev->pasync_obj);
int fasync_helper(int fd, struct file *filp, int mode, struct fasync_struct **pp);
/*
功能:产生或释放异步通知结构对象
参数:
返回值:成功为>=0,失败负数
*/
void kill_fasync(struct fasync_struct **, int, int);
/*
功能:发信号
参数:
struct fasync_struct ** 指向保存异步通知结构地址的指针
int 信号 SIGIO/SIGKILL/SIGCHLD/SIGCONT/SIGSTOP
int 读写信息POLLIN、POLLOUT
*/
mychar.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "mychar.h"
#define BUF_LEN 100
int major = 11; //主设备号
int minor = 0; //次设备号
int char_num = 1; //设备号数量
struct mychar_dev
{
struct cdev mydev;
char mydev_buf[BUF_LEN];
int curlen;
wait_queue_head_t rq;
wait_queue_head_t wq;
struct fasync_struct *pasync_obj;
};
struct mychar_dev gmydev;
int mychar_open (struct inode *pnode, struct file *pfile)//打开设备
{
pfile->private_data = (void *) (container_of(pnode->i_cdev, struct mychar_dev, mydev));
return 0;
}
int mychar_close(struct inode *pnode, struct file *pfile)//关闭设备
{
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
if(pmydev->pasync_obj != NULL) {
fasync_helper(-1, pfile, 0, &pmydev->pasync_obj);
}
return 0;
}
ssize_t mychar_read (struct file *pfile, char __user *puser, size_t count, loff_t *p_pos) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int size = 0;
int ret = 0;
/* 判断是否有数据可读 */
if(pmydev->curlen <= 0) {
if(pfile->f_flags & O_NONBLOCK) { //非阻塞
printk("O_NONBLOCK Not Data Read\n");
return -1;
} else { //阻塞
/* 睡眠 当curlen>0 时返回 */
ret = wait_event_interruptible(pmydev->rq, pmydev->curlen > 0);
if(ret) {
return -ERESTARTSYS;
}
}
}
// 确定要读取的数据长度,如果请求大于设备当前数据长度,则读取全部可用数据
if (count > pmydev->curlen) {
size = pmydev->curlen;
}
else {
size = count;
}
// 将设备数据复制到用户空间缓冲区
ret = copy_to_user(puser, pmydev->mydev_buf, size);
if(ret) {
printk("copy_to_user failed\n");
return -1;
}
// 移动设备内部缓冲区,去除已读取的数据
memcpy(pmydev->mydev_buf, pmydev->mydev_buf + size, pmydev->curlen - size);
pmydev->curlen -= size;
wake_up_interruptible(&pmydev->wq);
// 返回实际读取的字节数
return size;
}
ssize_t mychar_write (struct file *pfile, const char __user *puser, size_t count, loff_t *p_pos) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int size = 0;
int ret = 0;
if(pmydev->curlen >= BUF_LEN) {
if(pfile->f_flags & O_NONBLOCK) { //非阻塞
printk("O_NONBLOCK Can Not Write Data\n");
return -1;
} else { //阻塞
ret = wait_event_interruptible(pmydev->wq, pmydev->curlen < BUF_LEN);
if(ret) {
return -ERESTARTSYS;
}
}
}
// 确定要写入的数据长度,如果请求大于设备缓冲区剩余空间,则写入剩余空间大小
if (count > BUF_LEN - pmydev->curlen) {
size = BUF_LEN - pmydev->curlen;
}
else {
size = count;
}
// 从用户空间复制数据到设备缓冲区
ret = copy_from_user(pmydev->mydev_buf + pmydev->curlen, puser, size);
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
// 更新设备缓冲区中的数据长度
pmydev->curlen += size;
/* 唤醒读阻塞 */
wake_up_interruptible(&pmydev->rq);
if(pmydev->pasync_obj != NULL) {
kill_fasync(&pmydev->pasync_obj, SIGIO,POLL_IN);
}
// 返回实际写入的字节数
return size;
}
long mychar_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg)
{
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
int __user *pret = (int *)arg;
int maxlen = BUF_LEN;
int ret = 0;
switch(cmd) {
case MYCHAR_IOCTL_GET_MAXLEN:
ret = copy_to_user(pret, &maxlen, sizeof(int));
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
break;
case MYCHAR_IOCTL_GET_CURLEN:
ret = copy_to_user(pret, &pmydev->curlen, sizeof(int));
if(ret) {
printk("copy_from_user failed\n");
return -1;
}
break;
default:
printk("The is a know\n");
return -1;
}
return 0;
}
unsigned int mychar_poll(struct file *pfile, poll_table *ptb) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
unsigned int mask = 0;
poll_wait(pfile, &pmydev->rq, ptb);
poll_wait(pfile, &pmydev->wq, ptb);
if(pmydev->curlen > 0) {
mask |= POLLIN | POLLRDNORM;
}
if(pmydev->curlen < BUF_LEN) {
mask |= POLLOUT | POLLWRNORM;
}
return mask;
}
int mychar_fasync(int fd, struct file *pfile, int mode) {
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
return fasync_helper(fd, pfile, mode, &pmydev->pasync_obj);
}
struct file_operations myops = {
.owner = THIS_MODULE,
.open = mychar_open,
.read = mychar_read,
.write = mychar_write,
.unlocked_ioctl = mychar_ioctl,
.poll = mychar_poll,
.fasync = mychar_fasync,
};
int __init mychar_init(void)
{
int ret = 0;
dev_t devno = MKDEV(major, minor);
/* 手动申请设备号 */
ret = register_chrdev_region(devno, char_num, "mychar");
if (ret) {
/* 动态申请设备号 */
ret = alloc_chrdev_region(&devno, minor, char_num, "mychar");
if(ret){
printk("get devno failed\n");
return -1;
}
/*申请成功 更新设备号*/
major = MAJOR(devno);
}
/* 给struct cdev对象指定操作函数集 */
cdev_init(&gmydev.mydev, &myops);
/* 将struct cdev对象添加到内核对应的数据结构中 */
gmydev.mydev.owner = THIS_MODULE;
cdev_add(&gmydev.mydev, devno, char_num);
/* 初始化 */
init_waitqueue_head(&gmydev.rq);
init_waitqueue_head(&gmydev.wq);
return 0;
}
void __exit mychar_exit(void)
{
dev_t devno = MKDEV(major, minor);
printk("exit %d\n", devno);
/* 从内核中移除一个字符设备 */
cdev_del(&gmydev.mydev);
/* 回收设备号 */
unregister_chrdev_region(devno, char_num);
}
MODULE_LICENSE("GPL");
module_init(mychar_init);
module_exit(mychar_exit);
testmychar_signal.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "mychar.h"
int fd = -1;
void sigio_handler(int signo);
int main(int argc, char *argv[])
{
int ret = 0;
fd_set rfds;
int flg = 0;
if(argc < 2) {
printf("The argument is too few\n");
return -1;
}
signal(SIGIO, sigio_handler);
fd = open(argv[1], O_RDWR);
if(fd < 0) {
perror("open");
return -1;
}
fcntl(fd, F_SETOWN, getpid());
flg = fcntl(fd, F_GETFL);
flg |= FASYNC;
fcntl(fd, F_SETFL, flg);
while(1);
close(fd);
fd = -1;
return 0;
}
void sigio_handler(int signo) {
char buf[32] = "";
read(fd, buf, sizeof(buf));
printf("buf = %s\n", buf);
}