IO模型:多路复用及信号驱动

一、多路复用

描述符:

  1. 文件描述符:设备文件、管道文件
  2. socket描述符

1.1 应用层:三套接口select、poll、epoll

select:位运算实现 监控的描述符数量有限(32位机1024,64位机2048) 效率差

poll:链表实现,监控的描述符数量不限 效率差

epoll:效率最高,监控的描述符数量不限

select

int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);
/*	功能:监听多个描述符,阻塞等待有一个或者多个文件描述符,准备就绪。
		内核将没有准备就绪的文件描述符,从集合中清掉了。
	参数:  nfds			最大文件描述符数 ,加1
			readfds		读文件描述符集合
			writefds		写文件描述符集合
			exceptfds		其他异常的文件描述符集合
			timeout		超时时间(NULL)
	返回值:当timeout为NULL时返回0,成功:准备好的文件描述的个数  出错:-1 
		   当timeout不为NULL时,如超时设置为0,则select为非阻塞,超时设置 > 0,则无描述符可被操作的情况下阻塞指定长度的时间 
*/
void FD_CLR(int fd, fd_set *set);
//功能:将fd 从集合中清除掉

int  FD_ISSET(int fd, fd_set *set);
//功能:判断fd 是否存在于集合中
 
void FD_SET(int fd, fd_set *set);
//功能:将fd 添加到集合中

void FD_ZERO(fd_set *set);
//功能:将集合清零

//使用模型:

while(1)
{
    /*得到最大的描述符maxfd*/
    /*FD_ZERO清空描述符集合*/
	/*将被监控描述符加到相应集合rfds里  FD_SET*/
    /*设置超时*/
    ret = select(maxfd+1,&rfds,&wfds,NULL,NULL);
    if(ret < 0)
    {
        if(errno == EINTR)//错误时信号引起的
        {
        	continue;   
        }
        else
        {
            break;
        }
    }
    else if(ret == 0)
    {//超时
        //.....
    }
    else
    { //> 0 ret为可被操作的描述符个数
        if(FD_ISSET(fd1,&rfds))
        {//读数据
            //....
        }
        if(FD_ISSET(fd2,&rfds))
        {//读数据
            //....
        }
        ///.....
        if(FD_ISSET(fd1,&wfds))
        {//写数据
            //....
        }
    }
}
   

1.2 驱动层:实现poll函数

void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)/*功能:将等待队列头添加至poll_table表中
  参数:struct file :设备文件
  Wait_queue_head_t :等待队列头
  Poll_table :poll_table表
*/

/*该函数与select、poll、epoll_wait函数相对应,协助这些多路监控函数判断本设备是否有数据可读写*/
unsigned int xxx_poll(struct file *filp, poll_table *wait) //函数名初始化给struct file_operations的成员.poll
{
    unsigned int mask = 0;
    /*
    	1. 将所有等待队列头加入poll_table表中
    	2. 判断是否可读,如可读则mask |= POLLIN | POLLRDNORM;
    	3. 判断是否可写,如可写则mask |= POLLOUT | POLLWRNORM;
    */
    
    return mask;
}

1.3 实现代码:

mychar_poll.c

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include "mychar.h"

#define BUF_LEN 100

int major = 11;					//主设备号
int minor = 0;					//次设备号
int char_num = 1;				//设备号数量

struct mychar_dev 
{
	struct cdev mydev;
	char mydev_buf[BUF_LEN];
	int curlen;

	wait_queue_head_t rq;
	wait_queue_head_t wq;
};
struct mychar_dev gmydev;

int mychar_open (struct inode *pnode, struct file *pfile)//打开设备
{
	pfile->private_data = (void *) (container_of(pnode->i_cdev, struct mychar_dev, mydev));
	printk("open\n");
	return 0;
}

int mychar_close(struct inode *pnode, struct file *pfile)//关闭设备
{
	printk("close\n");
	return 0;
}

ssize_t mychar_read (struct file *pfile, char __user *puser, size_t count, loff_t *p_pos) {

	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	int size = 0;
	int ret = 0;

	/* 判断是否有数据可读 */
	if(pmydev->curlen <= 0) {

		if(pfile->f_flags & O_NONBLOCK) { //非阻塞
			printk("O_NONBLOCK Not Data Read\n");
			return -1;

		} else { //阻塞

			/* 睡眠 当curlen>0 时返回 */
			ret = wait_event_interruptible(pmydev->rq, pmydev->curlen > 0);
			if(ret) {
				return -ERESTARTSYS;
			}
		}
	}


	// 确定要读取的数据长度,如果请求大于设备当前数据长度,则读取全部可用数据
	if (count > pmydev->curlen) {
		size = pmydev->curlen;
	}
	else {
		size = count;
	}

	// 将设备数据复制到用户空间缓冲区
	ret = copy_to_user(puser, pmydev->mydev_buf, size);
	if(ret) {
		printk("copy_to_user failed\n");
		return -1;
	}

	// 移动设备内部缓冲区,去除已读取的数据
	memcpy(pmydev->mydev_buf, pmydev->mydev_buf + size, pmydev->curlen - size);

	pmydev->curlen -= size;

	wake_up_interruptible(&pmydev->wq);
	
	// 返回实际读取的字节数
	return size;
}

ssize_t mychar_write (struct file *pfile, const char __user *puser, size_t count, loff_t *p_pos) {

	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	int size = 0;
	int ret = 0;

	if(pmydev->curlen >= BUF_LEN) {

		if(pfile->f_flags & O_NONBLOCK) { //非阻塞
			printk("O_NONBLOCK Can Not Write Data\n");
			return -1;

		} else { //阻塞
			ret = wait_event_interruptible(pmydev->wq, pmydev->curlen < BUF_LEN);
			if(ret) {
				return -ERESTARTSYS;
			}
		}
		
	}


	// 确定要写入的数据长度,如果请求大于设备缓冲区剩余空间,则写入剩余空间大小
	if (count > BUF_LEN - pmydev->curlen) {
		size = BUF_LEN - pmydev->curlen;
	}
	else {
		size = count;
	}

	// 从用户空间复制数据到设备缓冲区
	ret = copy_from_user(pmydev->mydev_buf + pmydev->curlen, puser, size);
	if(ret) {
		printk("copy_from_user failed\n");
		return -1;
	}

	// 更新设备缓冲区中的数据长度
	pmydev->curlen += size;


	/* 唤醒读阻塞 */
	wake_up_interruptible(&pmydev->rq);

	 // 返回实际写入的字节数
	return size;
}

long mychar_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg) 
{
	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	int __user *pret = (int *)arg;
	int maxlen = BUF_LEN;
	int ret = 0;

	switch(cmd) {
	case MYCHAR_IOCTL_GET_MAXLEN:
		ret = copy_to_user(pret, &maxlen, sizeof(int));
		if(ret) {
			printk("copy_from_user failed\n");
			return -1;
		}
		break;

	case MYCHAR_IOCTL_GET_CURLEN:
		ret = copy_to_user(pret, &pmydev->curlen, sizeof(int));
		if(ret) {
			printk("copy_from_user failed\n");
			return -1;
		}
		break;

	default:
		printk("The is a know\n");
		return -1;
	}
	return 0;
}

unsigned int mychar_poll(struct file *pfile, poll_table *ptb) {

	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	unsigned int mask = 0;

	poll_wait(pfile, &pmydev->rq, ptb);
	poll_wait(pfile, &pmydev->wq, ptb);

	if(pmydev->curlen > 0) {
		mask |= POLLIN | POLLRDNORM;
	}
	if(pmydev->curlen < BUF_LEN) {
		mask |= POLLOUT | POLLWRNORM;
	}

	return mask;
}

struct file_operations myops = {
	.owner = THIS_MODULE,
	.open = mychar_open,
	.read = mychar_read,
	.write = mychar_write,
	.unlocked_ioctl = mychar_ioctl,
	.poll = mychar_poll,
};

int __init mychar_init(void) 
{
	int ret = 0;
	dev_t devno = MKDEV(major, minor);

	/* 手动申请设备号 */
	ret = register_chrdev_region(devno, char_num, "mychar");
	if (ret) {
		/* 动态申请设备号 */
		ret = alloc_chrdev_region(&devno, minor, char_num, "mychar");
		if(ret){
			printk("get devno failed\n");
			return -1;
		}
		/*申请成功 更新设备号*/
		major = MAJOR(devno);
	}
	
	/* 给struct cdev对象指定操作函数集 */
	cdev_init(&gmydev.mydev, &myops);

	/* 将struct cdev对象添加到内核对应的数据结构中 */
	gmydev.mydev.owner = THIS_MODULE;
	cdev_add(&gmydev.mydev, devno, char_num);

	/* 初始化 */
	init_waitqueue_head(&gmydev.rq);
	init_waitqueue_head(&gmydev.wq);


	return 0;
}

void __exit mychar_exit(void) 
{

	dev_t devno = MKDEV(major, minor);
	printk("exit %d\n", devno);
	
	/* 从内核中移除一个字符设备 */
	cdev_del(&gmydev.mydev);

	/* 回收设备号 */
	unregister_chrdev_region(devno, char_num);

}

MODULE_LICENSE("GPL");
module_init(mychar_init);
module_exit(mychar_exit);

testmychar_select.c

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include "mychar.h"
int main(int argc, char *argv[])
{
	int fd = -1;
	char buf[32] = "";
	int ret = 0;
	fd_set rfds;

	if(argc < 2) {
		printf("The argument is too few\n");
		return -1;
	}

	fd = open(argv[1], O_RDWR);
	if(fd < 0) {
		perror("open");
		return -1;
	}

	while(1) {
		FD_ZERO(&rfds);
		FD_SET(fd, &rfds);
		ret = select(fd + 1, &rfds, NULL, NULL,NULL);
		if(ret < 0) {
			if(errno == EINTR) {
				continue;
			} else {
				printf("select errno\n");
				break;
			}
		}
		if(FD_ISSET(fd, &rfds)) {
			read(fd, buf, 8);
			printf("buf = %s\n", buf);
		}
	}
	close(fd);
	fd = -1;
	return 0;
}

二、信号驱动

2.1 应用层:信号注册+fcntl

signal(SIGIO, input_handler); //注册信号处理函数

fcntl(fd, F_SETOWN, getpid());//将描述符设置给对应进程,好由描述符获知PID

oflags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, oflags | FASYNC);//将该设备的IO模式设置成信号驱动模式

void input_handler(int signum)//应用自己实现的信号处理函数,在此函数中完成读写
{
    //读数据
}

//应用模板
int main()
{
	int fd = open("/dev/xxxx",O_RDONLY);

	fcntl(fd, F_SETOWN, getpid());

	oflags = fcntl(fd, F_GETFL);
	fcntl(fd, F_SETFL, oflags | FASYNC);

	signal(SIGIO,xxxx_handler);

	//......
}
    
void xxxx_handle(int signo)
{//读写数据
    
}


2.2 驱动层:实现fasync函数

/*设备结构中添加如下成员*/
struct fasync_struct *pasync_obj;

/*应用调用fcntl设置FASYNC时调用该函数产生异步通知结构对象,并将其地址设置到设备结构成员中*/
static int hello_fasync(int fd, struct file *filp, int mode) //函数名初始化给struct file_operations的成员.fasync
{
	struct hello_device *dev = filp->private_data; 
	return fasync_helper(fd, filp, mode, &dev->pasync_obj);
}

/*写函数中有数据可读时向应用层发信号*/
if (dev->pasync_obj)
       kill_fasync(&dev->pasync_obj, SIGIO, POLL_IN);
       
/*release函数中释放异步通知结构对象*/
if (dev->pasync_obj) 
	fasync_helper(-1, filp, 0, &dev->pasync_obj);

int fasync_helper(int fd, struct file *filp, int mode, struct fasync_struct **pp);
/*
	功能:产生或释放异步通知结构对象
	参数:
	返回值:成功为>=0,失败负数
*/

void kill_fasync(struct fasync_struct **, int, int);
/*	
	功能:发信号
	参数:
		struct fasync_struct ** 指向保存异步通知结构地址的指针
		int 	信号 SIGIO/SIGKILL/SIGCHLD/SIGCONT/SIGSTOP
		int 	读写信息POLLIN、POLLOUT
*/

2.3 实现代码

mychar.c

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include "mychar.h"

#define BUF_LEN 100

int major = 11;					//主设备号
int minor = 0;					//次设备号
int char_num = 1;				//设备号数量

struct mychar_dev 
{
	struct cdev mydev;
	char mydev_buf[BUF_LEN];
	int curlen;

	wait_queue_head_t rq;
	wait_queue_head_t wq;

	struct fasync_struct *pasync_obj;
};
struct mychar_dev gmydev;

int mychar_open (struct inode *pnode, struct file *pfile)//打开设备
{
	pfile->private_data = (void *) (container_of(pnode->i_cdev, struct mychar_dev, mydev));
	return 0;
}

int mychar_close(struct inode *pnode, struct file *pfile)//关闭设备
{
	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;

	if(pmydev->pasync_obj != NULL) {
		fasync_helper(-1, pfile, 0, &pmydev->pasync_obj);
	}
	
	return 0;
}

ssize_t mychar_read (struct file *pfile, char __user *puser, size_t count, loff_t *p_pos) {

	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	int size = 0;
	int ret = 0;

	/* 判断是否有数据可读 */
	if(pmydev->curlen <= 0) {

		if(pfile->f_flags & O_NONBLOCK) { //非阻塞
			printk("O_NONBLOCK Not Data Read\n");
			return -1;

		} else { //阻塞

			/* 睡眠 当curlen>0 时返回 */
			ret = wait_event_interruptible(pmydev->rq, pmydev->curlen > 0);
			if(ret) {
				return -ERESTARTSYS;
			}
		}
	}


	// 确定要读取的数据长度,如果请求大于设备当前数据长度,则读取全部可用数据
	if (count > pmydev->curlen) {
		size = pmydev->curlen;
	}
	else {
		size = count;
	}

	// 将设备数据复制到用户空间缓冲区
	ret = copy_to_user(puser, pmydev->mydev_buf, size);
	if(ret) {
		printk("copy_to_user failed\n");
		return -1;
	}

	// 移动设备内部缓冲区,去除已读取的数据
	memcpy(pmydev->mydev_buf, pmydev->mydev_buf + size, pmydev->curlen - size);

	pmydev->curlen -= size;

	wake_up_interruptible(&pmydev->wq);
	
	// 返回实际读取的字节数
	return size;
}

ssize_t mychar_write (struct file *pfile, const char __user *puser, size_t count, loff_t *p_pos) {

	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	int size = 0;
	int ret = 0;

	if(pmydev->curlen >= BUF_LEN) {

		if(pfile->f_flags & O_NONBLOCK) { //非阻塞
			printk("O_NONBLOCK Can Not Write Data\n");
			return -1;

		} else { //阻塞
			ret = wait_event_interruptible(pmydev->wq, pmydev->curlen < BUF_LEN);
			if(ret) {
				return -ERESTARTSYS;
			}
		}
		
	}


	// 确定要写入的数据长度,如果请求大于设备缓冲区剩余空间,则写入剩余空间大小
	if (count > BUF_LEN - pmydev->curlen) {
		size = BUF_LEN - pmydev->curlen;
	}
	else {
		size = count;
	}

	// 从用户空间复制数据到设备缓冲区
	ret = copy_from_user(pmydev->mydev_buf + pmydev->curlen, puser, size);
	if(ret) {
		printk("copy_from_user failed\n");
		return -1;
	}

	// 更新设备缓冲区中的数据长度
	pmydev->curlen += size;


	/* 唤醒读阻塞 */
	wake_up_interruptible(&pmydev->rq);

	if(pmydev->pasync_obj != NULL) {
		kill_fasync(&pmydev->pasync_obj, SIGIO,POLL_IN);
	}

	 // 返回实际写入的字节数
	return size;
}

long mychar_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg) 
{
	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	int __user *pret = (int *)arg;
	int maxlen = BUF_LEN;
	int ret = 0;

	switch(cmd) {
	case MYCHAR_IOCTL_GET_MAXLEN:
		ret = copy_to_user(pret, &maxlen, sizeof(int));
		if(ret) {
			printk("copy_from_user failed\n");
			return -1;
		}
		break;

	case MYCHAR_IOCTL_GET_CURLEN:
		ret = copy_to_user(pret, &pmydev->curlen, sizeof(int));
		if(ret) {
			printk("copy_from_user failed\n");
			return -1;
		}
		break;

	default:
		printk("The is a know\n");
		return -1;
	}
	return 0;
}

unsigned int mychar_poll(struct file *pfile, poll_table *ptb) {

	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	unsigned int mask = 0;

	poll_wait(pfile, &pmydev->rq, ptb);
	poll_wait(pfile, &pmydev->wq, ptb);

	if(pmydev->curlen > 0) {
		mask |= POLLIN | POLLRDNORM;
	}
	if(pmydev->curlen < BUF_LEN) {
		mask |= POLLOUT | POLLWRNORM;
	}

	return mask;
}

int mychar_fasync(int fd, struct file *pfile, int mode) {
	struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
	return fasync_helper(fd, pfile, mode, &pmydev->pasync_obj);
}

struct file_operations myops = {
	.owner = THIS_MODULE,
	.open = mychar_open,
	.read = mychar_read,
	.write = mychar_write,
	.unlocked_ioctl = mychar_ioctl,
	.poll = mychar_poll,
	.fasync = mychar_fasync,
};

int __init mychar_init(void) 
{
	int ret = 0;
	dev_t devno = MKDEV(major, minor);

	/* 手动申请设备号 */
	ret = register_chrdev_region(devno, char_num, "mychar");
	if (ret) {
		/* 动态申请设备号 */
		ret = alloc_chrdev_region(&devno, minor, char_num, "mychar");
		if(ret){
			printk("get devno failed\n");
			return -1;
		}
		/*申请成功 更新设备号*/
		major = MAJOR(devno);
	}
	
	/* 给struct cdev对象指定操作函数集 */
	cdev_init(&gmydev.mydev, &myops);

	/* 将struct cdev对象添加到内核对应的数据结构中 */
	gmydev.mydev.owner = THIS_MODULE;
	cdev_add(&gmydev.mydev, devno, char_num);

	/* 初始化 */
	init_waitqueue_head(&gmydev.rq);
	init_waitqueue_head(&gmydev.wq);


	return 0;
}

void __exit mychar_exit(void) 
{

	dev_t devno = MKDEV(major, minor);
	printk("exit %d\n", devno);
	
	/* 从内核中移除一个字符设备 */
	cdev_del(&gmydev.mydev);

	/* 回收设备号 */
	unregister_chrdev_region(devno, char_num);

}

MODULE_LICENSE("GPL");
module_init(mychar_init);
module_exit(mychar_exit);

testmychar_signal.c

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include "mychar.h"

int fd = -1;

void sigio_handler(int signo);

int main(int argc, char *argv[])
{
	int ret = 0;
	fd_set rfds;
	int flg = 0;

	if(argc < 2) {
		printf("The argument is too few\n");
		return -1;
	}

	signal(SIGIO, sigio_handler);

	fd = open(argv[1], O_RDWR);
	if(fd < 0) {
		perror("open");
		return -1;
	}

	fcntl(fd, F_SETOWN, getpid());

	flg = fcntl(fd, F_GETFL);
	flg |= FASYNC;
	fcntl(fd, F_SETFL, flg);

	while(1);
	
	close(fd);
	fd = -1;
	return 0;
}

void sigio_handler(int signo) {

	char buf[32] = "";
	read(fd, buf, sizeof(buf));
	printf("buf = %s\n", buf);
}

你可能感兴趣的:(驱动开发,linux)