STM32生成互补PWM波(输出前均为低电平)

  STM32的定时器功能很多,今天介绍一下生成互补PWM波形。STM32高级定时器1和8的时钟是168MHZ。通用定时器通常是84MHZ

频率通用设置

  定时器时钟频率设置的通用写法。一般我们都是设置两个参数,分频系数和自动重装载值

  但是其实我们可以对其代码可以做进一步封装,直接频率作为参数传入,然后里面通过频率再计算分频系数和自动重装载值

void TimerInit(u32 Frequency)
{
  u32 Prescalar;
  u32 Period;
 if(Frequency>=16 && Frequency<500000)
 {
     Prescalar = 84;
     Period = SystemCoreClock/168/Frequency;
  }
  else if(Frequency<16)
  {
     Prescalar = 8400;
     Period = SystemCoreClock/168/100/Frequency;
  }
  else
  {
     Prescalar = 1;
     Period = SystemCoreClock/2/Frequency;
  }
  TIM_TimeBaseInitTypeDef    TIM_TimeBaseInitTypeDefStructure;
  NVIC_InitTypeDef   NVIC_InitStructure;
  
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
  
  TIM_DeInit(TIM3);
  
  TIM_TimeBaseInitTypeDefStructure.TIM_Period=(Period-1); 
  TIM_TimeBaseInitTypeDefStructure.TIM_Prescaler=(Prescalar -1);        
  TIM_TimeBaseInitTypeDefStructure.TIM_CounterMode=TIM_CounterMode_Up;
  TIM_TimeBaseInitTypeDefStructure.TIM_ClockDivision=TIM_CKD_DIV1;

  TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitTypeDefStructure);
  
  NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;            //外部中断8
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00;  //抢占优先级1
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00;         //子优先级2
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;               //使能外部中断通道
  NVIC_Init(&NVIC_InitStructure);   
  
  TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE);
  TIM_ClearITPendingBit(TIM3,TIM_IT_Update);
  
  TIM_Cmd(TIM3,DISABLE);
}

互补PWM波形产生

  在输出PWM波形之前,首先需要找到哪些引脚可以复用为定时器,产生PWM波形,在原理图上其实特别好找。

STM32生成互补PWM波(输出前均为低电平)_第1张图片
  找到之后,就可以直接写代码了,相比定时器设置的时候多了一个结构体设TIM_OCInitTypeDef,负责PWM波形的设置。笔者这里以定时器1的123通道为例。

	u32 Prescalar;
	u32 Period;
	if(Frequency>=16 && Frequency<500000)
	{
	     Prescalar = 168;
	     Period = SystemCoreClock/168/Frequency;
	}
    else if(Frequency<16)
	{
	     Prescalar = 16800;
	     Period = SystemCoreClock/168/100/Frequency;
	}
	else
	{
	     Prescalar = 1;
	     Period = SystemCoreClock/Frequency;
    }
    
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_BDTRInitTypeDef TIM_BDTRStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);  	//TIM1时钟使能    
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); 	//使能PORTA时钟
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); 	//使能PORTA时钟	
    
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1); //GPIOA8复用为定时器1
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource11,GPIO_AF_TIM1);
	
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource13,GPIO_AF_TIM1);
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource15,GPIO_AF_TIM1);
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_11;           //GPIOA8
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;        //复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;	//速度100MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;      //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;        //上拉
	GPIO_Init(GPIOA,&GPIO_InitStructure);              //初始化PA8
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; 
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;        //复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;	//速度100MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;      //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;        //上拉
	GPIO_Init(GPIOB,&GPIO_InitStructure);     
	 
	TIM_DeInit(TIM1); 
	
	TIM_TimeBaseStructure.TIM_Prescaler=Prescalar-1;  //定时器分频
	TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
	TIM_TimeBaseStructure.TIM_Period=Period -1;   //自动重装载值
	TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; 
	TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);//初始化定时器1
	
	//初始化TIM1 Channel1 PWM模式	  
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
	TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低
	TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High ;//互补输出极性
	TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;//指定空闲状态下的TIM输出比较的引脚状态。
	TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;//指定空闲状态下的TIM互补输出比较的引脚状态。
	TIM_OCInitStructure.TIM_Pulse = Period /2; 
	
	TIM_OC1Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM1 4OC1
	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器
  
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
    TIM_OC4Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设  TIM1 4OC1
	TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器

    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
    TIM_OC2Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM1 4OC1
	TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器
	
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
	TIM_OC3Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM1 4OC1
	TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器
  
	TIM_ARRPreloadConfig(TIM1,ENABLE);//ARPE使能
	TIM_CtrlPWMOutputs(TIM1,ENABLE);   //输出使能,高级定时器特有的函数,通用定时器没有。
	TIM_Cmd(TIM1, ENABLE);//使能TIM1

  输出的波形如下:

STM32生成互补PWM波(输出前均为低电平)_第2张图片

死区设置

  如果需要使用PWM波形控制MOS管的开断,为防止同臂桥导通,就需要设置死区,正好高级定时器支持设置死区时间,笔者也整理成通用的代码,直接设置DeadTime即可设置死区时间,以ns为单位

  直接在上面的代码后面加上以下代码即可设置死区时间。


     if(DeadTime<755)
	 {
		 SetTime=DeadTime/5.95;
	 }
	 else if(DeadTime>761&&DeadTime<1511)
	 {
		 SetTime=DeadTime/11.9-64+128;
	 }
	 else if(DeadTime>1511&&DeadTime<2973)
	 {
		 SetTime=DeadTime/47.2-32+192;
	 }
	 else if(DeadTime>3020&&DeadTime<5947)
	 {
		 SetTime=DeadTime/94.4-32+224;
	 }
	 
	TIM_BDTRStructure.TIM_AutomaticOutput=TIM_AutomaticOutput_Enable;// 自动输出功能使能??
	TIM_BDTRStructure.TIM_Break=TIM_Break_Disable;                   //失能刹车输入
	TIM_BDTRStructure.TIM_BreakPolarity=TIM_BreakPolarity_High;      //刹车输入管脚极性高?
	TIM_BDTRStructure.TIM_DeadTime=SetTime;                    //输出打开和关闭状态之间的延时 
	TIM_BDTRStructure.TIM_LOCKLevel=TIM_LOCKLevel_OFF;     // 锁电平参数: 不锁任何位
	TIM_BDTRStructure.TIM_OSSIState=TIM_OSSIState_Disable; //设置在空闲模式下非工作状态选项
	TIM_BDTRStructure.TIM_OSSRState=TIM_OSSRState_Disable; //设置在运行模式下非工作状态选项
	TIM_BDTRConfig(TIM1,&TIM_BDTRStructure);

  产生的互补波形如下,死区时间是:50ns

STM32生成互补PWM波(输出前均为低电平)_第3张图片

生成特定个数的PWM波形

  定时器里面提供一个函数,可以直接设置波形的个数,定时器结构体里面有个参数可以设置脉冲个数,即单脉冲模式

TIM_TimeBaseStructure.TIM_RepetitionCounter=PulseNum;
TIM_SelectOnePulseMode(TIM1,TIM_OPMode_Single);

  通过上面两个函数就可以生成特定个数得波形个数。下次如果需要再生成需要重新启动定时器。


    //部分代码
    TIM_TimeBaseStructure.TIM_Prescaler=Prescalar;  //定时器分频
	TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
	TIM_TimeBaseStructure.TIM_Period=Period-1;   //自动重装载值
	TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; 
	TIM_TimeBaseStructure.TIM_RepetitionCounter=PulseNum;   //脉冲个数
	TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);//初始化定时器1
	
	TIM_SelectOnePulseMode(TIM1,TIM_OPMode_Single);

  特定个数的PMM波形。

STM32生成互补PWM波(输出前均为低电平)_第4张图片

输出前均为低电平的互补PWM波形

  很多时候,互补PWM波形作为Mos管的开关信号,需要在输出前为低电平。

  但是STM32输出的PWM波形是互补的,必然两个波形中必然有一段时间是高电平的,即使在配置的时候,可以设置波形的极性和空闲状态,但是还是无用,无法设置成想要的波形。

  下图为Mos管电路,需要PWM波形来控制。
STM32生成互补PWM波(输出前均为低电平)_第5张图片
  控制的波形信号。
STM32生成互补PWM波(输出前均为低电平)_第6张图片
  如果我们可以改变IO的状态,那么在输出前后改变成IO状态之后,就可以拉低电平,就可以实现输出前均为低电平的互补波形。

  在控制的时候,一般是设置固定的脉冲个数,所以还需要定时器在PWM波形输出完成之后,关闭定时器。

  所以具体的设计思路就出来了:

   1. STM32输出比较设置成单脉冲模型(特定个数),定时器1启动PWM之后,定时器2同时开始计时(利用定时器的波形个数来定时)。


   2. 波形产生完毕之后,定时时间到,关闭定时器1,关闭定时器2,同时将IO模式变成普通模式,将电平拉低。


   3. 同时如果要连续输出脉冲,所以需要定时器3做时间间隔定时。

u32 TIM1_PWM_Init(u32 Frequency,u16 DeadTime,u8 PulseNum)
{		 					 
	//此部分需手动修改IO口设置
	u32 arr=0;
	u16 SetTime=0;
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;

	TIM_BDTRInitTypeDef TIM_BDTRStructure;
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);  	//TIM1时钟使能    
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); 	//使能PORTA时钟
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); 	//使能PORTA时钟	
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1); //GPIOA8复用为定时器1
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource11,GPIO_AF_TIM1);
	
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource13,GPIO_AF_TIM1);
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource15,GPIO_AF_TIM1);
	
	GPIO_InitStructure.GPIO_Pin =     GPIO_Pin_8|GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_11;           //GPIOA8
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;        //复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;	//速度100MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;      //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;        //上拉
	GPIO_Init(GPIOA,&GPIO_InitStructure);              //初始化PA8
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; 
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;        //复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;	//速度100MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;      //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;        //上拉
	GPIO_Init(GPIOB,&GPIO_InitStructure);     
	 
	TIM_DeInit(TIM1); 
	
	arr=SystemCoreClock/Frequency; 

	TIM_TimeBaseStructure.TIM_Prescaler=0;  //定时器分频
	TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
	TIM_TimeBaseStructure.TIM_Period=arr-1;   //自动重装载值
	TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; 
	TIM_TimeBaseStructure.TIM_RepetitionCounter=PulseNum;
	TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);//初始化定时器1
	
	TIM_SelectOnePulseMode(TIM1,TIM_OPMode_Single);
	//初始化TIM1 Channel1 PWM模式	  
	
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
 	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
	TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低
	TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High ;//互补输出极性
	TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;//指定空闲状态下的TIM输出比较的引脚状态。
	TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;//指定空闲状态下的TIM互补输出比较的引脚状态。
	TIM_OCInitStructure.TIM_Pulse = arr/2; 
	TIM_OC1Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM1 4OC1
	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器
  
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
    TIM_OC4Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM1 4OC1
	TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器

    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
    TIM_OC2Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM1 4OC1
	TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器
	
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
	TIM_OC3Init(TIM1, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM1 4OC1
	TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);  //使能TIM1在CCR1上的预装载寄存器
   
	 if(DeadTime<755)
	 {
		 SetTime=DeadTime/5.95;
	 }
	 else if(DeadTime>761&&DeadTime<1511)
	 {
		 SetTime=DeadTime/11.9-64+128;
	 }
	 else if(DeadTime>1511&&DeadTime<2973)
	 {
		 SetTime=DeadTime/47.2-32+192;
	 }
	 else if(DeadTime>3020&&DeadTime<5947)
	 {
		 SetTime=DeadTime/94.4-32+224;
	 }
	 
	TIM_BDTRStructure.TIM_AutomaticOutput=TIM_AutomaticOutput_Enable;// 自动输出功能使能??
	TIM_BDTRStructure.TIM_Break=TIM_Break_Disable;                   //失能刹车输入
	TIM_BDTRStructure.TIM_BreakPolarity=TIM_BreakPolarity_High;      //刹车输入管脚极性高?
	TIM_BDTRStructure.TIM_DeadTime=SetTime;                    //输出打开和关闭状态之间的延时 
	TIM_BDTRStructure.TIM_LOCKLevel=TIM_LOCKLevel_OFF;     // 锁电平参数: 不锁任何位
	TIM_BDTRStructure.TIM_OSSIState=TIM_OSSIState_Disable; //设置在空闲模式下非工作状态选项
	TIM_BDTRStructure.TIM_OSSRState=TIM_OSSRState_Disable; //设置在运行模式下非工作状态选项
	TIM_BDTRConfig(TIM1,&TIM_BDTRStructure);

	TIM_ARRPreloadConfig(TIM1,ENABLE);//ARPE使能
	TIM_CtrlPWMOutputs(TIM1,ENABLE);
	TIM_Cmd(TIM1, DISABLE);//使能TIM1
	
	return arr;
  								  
}  
void SetPulseNum(u8 PulseNum)    //设置脉冲个数
{
  TIM1->RCR = PulseNum;
  TIM_GenerateEvent(TIM1,TIM_EventSource_Update);
}
void TIM3_IRQHandler(void)
{
	if(TIM_GetITStatus(TIM3,TIM_IT_Update)==SET) //溢出中断
	{
    if(StartPWM_Flag)          //开始产生PWM波形
    { 
        if(Count1==Tim3Count)           //定时间隔产生PWM波形
      {
	        if(FirstEntryFlag!=0)      //由于首次是复用模式,所以不用更改模式。
	           IOModeEnable();
	        TIM_Cmd(TIM1, ENABLE);                      //打开定时器1
	        TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);    //允许定时器4更新中断
	        TIM_Cmd(TIM2,ENABLE);                       //打开定时器4
	        Count1=0;
	        FirstEntryFlag=1;                                          
	   }
         else
       {
	        Count1++;
       }
      }
	}
	TIM_ClearITPendingBit(TIM3,TIM_IT_Update);  //清除中断标志位
}
void TIM2_IRQHandler(void)
{
  //定时时间到
	if(TIM_GetITStatus(TIM2,TIM_IT_Update)==SET) //溢出中断
	{
          TIM1->CR1 &= (uint16_t)~TIM_CR1_CEN;     //关闭定时器1操作
          IOModeDisable();                                             //IO模式
     }
	TIM_ClearITPendingBit(TIM2,TIM_IT_Update);  //清除中断标志位
}

  产生的波形如下:

STM32生成互补PWM波(输出前均为低电平)_第7张图片

STM32生成互补PWM波(输出前均为低电平)_第8张图片

你可能感兴趣的:(嵌入式,单片机,stm32)